PSPACE-decidability of Japaridze's Polymodal Logic

Ilya Shapirovsky

Institute for Information Transmission Problems Moscow, Russia

Satisfiability on ordinal sums of transitive frames

Ilya Shapirovsky

Institute for Information Transmission Problems Moscow, Russia

(ロ)、(型)、(E)、(E)、 E) の(の)

 GLP is the normal propositional modal logic with countably many modalities:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\Box_i(\Box_i p \to p) \to \Box_i p \text{ for all } i$$

$$\Box_i p \to \Box_j p \text{ for all } i < j$$

$$\Diamond_i p \to \Box_j \Diamond_j p \text{ for all } i < j$$

[Japaridze, Ignatiev, Boolos, Beklemishev,...]

٠

[Beklemishev, 2007] Hereditary orders.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

[Beklemishev, 2007] Hereditary orders.

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

٠

[Beklemishev, 2007] Hereditary orders.

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

[Beklemishev, 2007] Hereditary orders.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If a class of frames can be represented as a class of ordinal sums of "simple" frames, then it is also "simple".

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

<□ > < @ > < E > < E > E のQ @

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

1. Monomodal case

・ロト < 団ト < 三ト < 三ト < 回 < つへの

- 1. Monomodal case
 - Ordinal sums of transitive frames

- 1. Monomodal case
 - Ordinal sums of transitive frames
 - Truth-preserving transformations for ordinal sums of frames

(ロ)、(型)、(E)、(E)、 E) の(の)

- 1. Monomodal case
 - Ordinal sums of transitive frames
 - Truth-preserving transformations for ordinal sums of frames

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conditional satisfiability and moderate classes of frames

- 1. Monomodal case
 - Ordinal sums of transitive frames
 - Truth-preserving transformations for ordinal sums of frames

- Conditional satisfiability and moderate classes of frames
- 2. Polymodal case

Ordinal sums of frames

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ordinal sums of frames

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ordinal sums of frames

I = (W, R) is a finite partial order, $W = \{w_1, \dots, w_n\}$ $F_1 = (V_1, S_1), \dots, F_n = (V_n, S_n)$ are transitive frames

Ordinal sums of frames

I = (W, R) is a finite partial order, $W = \{w_1, \dots, w_n\}$ $F_1 = (V_1, S_1), \dots, F_n = (V_n, S_n)$ are transitive frames

$$I[(\mathsf{F}_1, \dots, \mathsf{F}_m)/(w_1, \dots, w_m)] = (\overline{W}, \overline{R}):$$

$$\overline{W} = (\{w_1\} \times V_1) \cup \dots \cup (\{w_m\} \times V_m)$$

$$(w', v')\overline{R}(w'', v'') \Leftrightarrow (w' \neq w'' \& w'Rw'') \text{ or } (w' = w'' = w_i \& v'S_iv'')$$

Ordinal sums of frames

I = (W, R) is a finite partial order, $W = \{w_1, \dots, w_n\}$ $F_1 = (V_1, S_1), \dots, F_n = (V_n, S_n)$ are transitive frames

For a class \mathcal{F} of frames, $I[\mathcal{F}] = \{I[(F_1, \dots, F_m)/(w_1, \dots, w_m)] \mid F_1, \dots, F_m \in \mathcal{F}\}$

Ordinal sums of frames

I = (W, R) is a finite partial order, $W = \{w_1, \dots, w_n\}$ $F_1 = (V_1, S_1), \dots, F_n = (V_n, S_n)$ are transitive frames

For a class ${\mathcal F}$ of frames,

$$\begin{split} \mathsf{I}[\mathcal{F}] &= \{\mathsf{I}[(\mathsf{F}_1, \dots, \mathsf{F}_m) / (w_1, \dots, w_m)] \mid \mathsf{F}_1, \dots, \mathsf{F}_m \in \mathcal{F} \}\\ \text{For a class } \mathcal{I} \text{ of finite partial orders,}\\ \mathcal{I}[\mathcal{F}] &= \bigcup \{\mathsf{I}[\mathcal{F}] \mid \mathsf{I} \in \mathcal{I} \} \end{split}$$

Ordinal sums of frames

Ordinal sums of frames

Example: skeleton

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Ordinal sums of frames

Ordinal sums of frames

Example: skeleton

Every transitive frame can be considered as an ordinal sum of its clusters.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ordinal sums of frames

Example: transitive frames

 \mathcal{PO} denotes the class of all finite (strict or non-strict) partial orders.

For $n \ge 1$, $C_n = (W_n, W_n \times W_n)$, where $W_n = \{1, \ldots, n\}$; C_0 denotes the irreflexive singleton $(\{0\}, \emptyset)$.

Let $\mathcal{F} = \{C_0, C_1, C_2 \dots\}, \mathcal{G} = \{C_1, C_2, \dots\}.$ Then (up to isomorphisms): $\mathcal{PO}[\mathcal{F}]$ is the class of all finite K4-frames, $\mathcal{PO}[\mathcal{G}]$ is the class of all finite S4-frames.

Truth-preserving transformations for ordinal sums of frames Treelike frames

 \mathcal{T} denotes the class of all finite transitive trees.

l emma

Let $\mathcal F$ be a class of frames, I be a finite rooted partial order. Then for any $H \in I[\mathcal{F}]$ there exists a tree $T \in \mathcal{T}$ such that for some $H' \in \mathcal{T}[\mathcal{F}]$ we have $H' \rightarrow H$.

Corollary φ is $\mathcal{PO}[\mathcal{F}]$ -satisfiable $\Rightarrow \varphi$ is $\mathcal{T}[\mathcal{F}]$ -satisfiable

Truth-preserving transformations for ordinal sums of frames Restricting height and branching

 $\langle \varphi \rangle$ denotes the cardinality of $Sub(\varphi)$.

Well-known fact: Any K4-satisfiable formula φ is satisfiable in some finite frame with the height and the branching of its skeleton not more then $\langle \varphi \rangle$.

Truth-preserving transformations for ordinal sums of frames Restricting height and branching

Let $T_{n,b}$ denotes the class of transitive trees with the height not more then h and the branching not more then b:

$$\mathcal{T}_{h,b} = \{\mathsf{T} \in \mathcal{T} \mid Ht(\mathsf{T}) \leq h, \ Br(\mathsf{T}) \leq b\}.$$

Lemma

Let \mathcal{F} be a class of transitive frames. If a formula φ is $\mathcal{PO}[\mathcal{F}]$ -satisfiable, then φ is $\mathcal{T}_{\langle \varphi \rangle, \langle \varphi \rangle}[\mathcal{F}]$ -satisfiable.

Selective filtration

A model $((W', R'), \theta')$ is a *weak submodel* of $((W, R), \theta)$, if $W' \subseteq W$, $R' \subseteq R$. $\theta(p) = \theta'(p) \cap W'$ for any propositional variable p.

Definition

Let M be a model, Ψ a set of formulas closed under subformulas. A weak submodel M' of M is called a *selective filtration of* M *through* Ψ , if for any $w \in M'$, for any formula ψ , we have

$$\Diamond \psi \in \Psi \& \mathsf{M}, w \vDash \Diamond \psi \implies \exists u \in R'(x) \mathsf{M}, u \vDash \psi,$$

where R' is the accessability relation of M'.

l emma

If M' is a selective filtration of M through Ψ , then for any $w \in M'$, for any $\psi \in \Psi$. we have

$$\mathsf{M}, \mathbf{w} \vDash \psi \Leftrightarrow \mathsf{M}', \mathbf{w} \vDash \psi.$$

Conditional satisfiability and moderate classes of frames

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Big and small

Conditional satisfiability and moderate classes of frames

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conditional satisfiability

M is a Kripke model

$$\begin{array}{lll} \mathsf{M}, w \not\models \mathcal{L}; \\ \mathsf{M}, w \models p & \Leftrightarrow & w \in \theta(p); \\ \mathsf{M}, w \models \varphi \rightarrow \psi & \Leftrightarrow & \mathsf{M}, w \not\models \varphi \text{ or } \mathsf{M}, w \models \psi; \\ \mathsf{M}, w \models \Diamond \varphi & \Leftrightarrow & \exists v (w R v \And \mathsf{M}, v \models \varphi). \end{array}$$

" φ is true at w in M".

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conditional satisfiability

M is a Kripke model, Ψ is a set of formulas

$$\begin{array}{lll} (\mathsf{M},w|\Psi) \not\vDash \bot \\ (\mathsf{M},w|\Psi) \vDash p & \Leftrightarrow & w \in \theta(p); \\ (\mathsf{M},w|\Psi) \vDash \varphi \rightarrow \psi & \Leftrightarrow & (\mathsf{M},w|\Psi) \nvDash \varphi \text{ or } (\mathsf{M},w|\Psi) \vDash \psi \\ (\mathsf{M},w|\Psi) \vDash \Diamond \varphi & \Leftrightarrow & \exists v (w R v \And \mathsf{M}, v \vDash \varphi) \\ & & \sigma \varphi \in \Psi \text{ or } \Diamond \varphi \in \Psi \end{array}$$

" φ is true at w in M under the condition Ψ ".

Decision procedures for ordinal sums of frames. Monomodal case

Conditional satisfiability and moderate classes of frames

Consider transitive models M_0 , M, their ordinal sum $M_0 + M$, and a formula φ . Put

$$\Psi = \{\psi \in Sub(\varphi) \mid \mathsf{M}, \mathsf{v} \vDash \psi \text{ for some } \mathsf{v}\}$$

Then for any $w \in M_0$,

 $\mathsf{M}_0 + \mathsf{M}, w \vDash \varphi \Leftrightarrow (\mathsf{M}_0, w | \Psi) \vDash \varphi$

More generally: for any set of formulas Φ ,

 $(\mathsf{M}_0 + \mathsf{M}, w | \Phi) \vDash \varphi \Leftrightarrow (\mathsf{M}_0, w | \Psi \cup \Phi) \vDash \varphi$

Moderate classes of frames

For a cone F, F $\Vdash \varphi$ means that φ is satisfiable at a root of F;

 $\mathsf{F} \mid \Psi \Vdash \varphi$ means $(\mathsf{M}, w | \Psi) \vDash \varphi$ for some model M based on F, where w is a root of F.

For a class of cones \mathcal{F} , $\mathcal{F} \mid \Psi \Vdash \varphi$ means that $\mathsf{F} \mid \Psi \Vdash \varphi$ for some $\mathsf{F} \in \mathcal{F}$

Definition

A sequence $(\mathcal{F}_n)_{n\in\mathbb{N}}$ of sets of rooted frames is called *d*-moderate for $d \in \mathbb{N}$, if there exists an algorithm such that for any formula φ and any $\Psi, \Phi \subseteq Sub(\varphi)$ it decides whether

$$\mathcal{F}_{\langle \varphi \rangle} \mid \Psi \Vdash \bigwedge \Phi$$

in space $O(\langle \varphi \rangle^d)$.

Moderate classes of frames: examples

Definition

A sequence $(\mathcal{F}_n)_{n\in\mathbb{N}}$ of sets of rooted frames is called *d*-moderate for $d \in \mathbb{N}$, if there exists an algorithm such that for any formula φ and any $\Psi, \Phi \subseteq Sub(\varphi)$ it decides whether

$$\mathcal{F}_{\langle arphi
angle} \mid \Psi \Vdash igwedge \Phi$$

in space $O(\langle \varphi \rangle^d)$.

Moderate classes of frames: examples

Definition

A sequence $(\mathcal{F}_n)_{n\in\mathbb{N}}$ of sets of rooted frames is called *d*-moderate for $d \in \mathbb{N}$, if there exists an algorithm such that for any formula φ and any $\Psi, \Phi \subseteq Sub(\varphi)$ it decides whether

$$\mathcal{F}_{\langle arphi
angle} \mid \Psi \Vdash igwedge \Phi$$

in space $O(\langle \varphi \rangle^d)$.

Example: $(\mathcal{F}_n)_{n \in \mathbb{N}}$ is moderate, if:

▶ *F_n* is the set of all (non-degenerate) clusters with cardinality not more then *n*:

for all $n \mathcal{F}_n = \{C_0, \dots, C_n\}$ or for all $n \mathcal{F}_n = \{C_1, \dots, C_n\}$;

F_n consists of a single frame which is a singleton: for all n F_n = {C₀} or for all n F_n = {C₁}.

Moderate classes of frames: examples

Definition

A sequence $(\mathcal{F}_n)_{n\in\mathbb{N}}$ of sets of rooted frames is called *d*-moderate for $d \in \mathbb{N}$, if there exists an algorithm such that for any formula φ and any $\Psi, \Phi \subseteq Sub(\varphi)$ it decides whether

$$\mathcal{F}_{\langle arphi
angle} \mid \Psi \Vdash igwedge \Phi$$

in space $O(\langle \varphi \rangle^d)$. For classes \mathcal{F} , \mathcal{G} , put

$$\mathcal{F}+\mathcal{G}=\{F+G\mid F\in\mathcal{F},\ G\in\mathcal{G}\}$$

Lemma

If $(\mathcal{F}_n)_{n\in\mathbb{N}}$, $(\mathcal{G}_n)_{n\in\mathbb{N}}$ are moderate, then $(\mathcal{F}_n + \mathcal{G}_n)_{n\in\mathbb{N}}$ are moderate.

Main lemma

If $(\mathcal{F}_n)_{n\in\mathbb{N}}$ is *d*-moderate sequence of sets of cones, and *P* is a polynomial of degree *d'*, then the sequence $(\mathcal{T}_{P(n),P(n)}[\mathcal{F}_n])_{n\in\mathbb{N}}$ is $\max\{2+d',d\}$ -moderate.

Algorithm

Let SatSimple(φ, Φ, Ψ) decide whether $\mathcal{F} \mid \Psi \Vdash \bigwedge \Phi$ for any φ , $\Phi, \Psi \subset Sub(\varphi)$ in space $f(\langle \varphi \rangle)$.

Then the following algorithm decides whether $\mathcal{T}_{h,b}[\mathcal{F}] \mid \Psi \Vdash \bigwedge \Phi$ for any $\varphi, \Phi, \Psi \subseteq Sub(\varphi), h, b > 0$ in space $O(f(\langle \varphi \rangle) + \langle \varphi \rangle bh)$:

```
Function SatTree(\varphi; \Phi, \Psi; h, b) returns boolean;
Begin
  if SatSimple(\varphi, \Phi, \Psi) then return(true);
  if h > 1 then
     for every integer b' such that 1 < b' < b
        for every \Phi_1, \ldots, \Phi_{b'} \subseteq Sub(\varphi)
           if \bigwedge SatTree(\varphi, \Psi_i, \Psi, h-1, b) then
              1 \le i \le b'
              if SatSimple(\varphi, \Phi, \Psi \cup \Psi_1 \cdots \cup \Psi_{h'}) then
                 return(true):
  return(false);
End.
```

Algorithm

l emma

Let \mathcal{F} be a class of frames, and let $G \in \mathcal{T}_{h+1,b}[\mathcal{F}]$ for some $h, b \geq 1$. Then G is either isomorphic to a frame $F \in \mathcal{F}$ or isomorphic to a frame $\mathsf{F} + (\mathsf{G}_1 \sqcup \cdots \sqcup \mathsf{G}_{b'})$, where $1 \leq b' \leq b$, $\mathsf{F} \in \mathcal{F}$, $\mathsf{G}_1, \ldots, \mathsf{G}_{b'} \in \mathcal{T}_{h,b}[\mathcal{F}]$.

Semantic condition

Theorem

Suppose that a logic L is characterized by $\mathcal{PO}[\mathcal{F}]$ for some class \mathcal{F} . If there exists a moderate sequence $(\mathcal{F}_n)_{n\in\mathbb{N}}$ such that $\mathcal{F}_n \subseteq \mathcal{F}$ for all $n \in \mathbb{N}$, and any L-satisfiable formula φ is $\mathcal{PO}[\mathcal{F}_{\langle \varphi \rangle}]$ -satisfiable, then L is in PSPACE.

Corollary

If $L = L(\mathcal{PO}[\mathcal{F}])$ for some finite class of finite cones \mathcal{F} , then L is in PSPACE.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Examples

Consider the logics K4, S4, Gödel-Löb logic GL, and Grzegorczyk logic GRZ. They are well-known to be PSPACE-decidable. Let us illustrate, how this fact follows from the above theorem.

Examples

Consider the logics K4, S4, Gödel-Löb logic GL, and Grzegorczyk logic GRZ. They are well-known to be PSPACE-decidable. Let us illustrate, how this fact follows from the above theorem.

GRZ (GL) is the logic of all finite non-strict (strict) partial orders: $\operatorname{GRZ} = \operatorname{L}(\mathcal{PO}[\{C_1\}]), \quad \operatorname{GL} = \operatorname{L}(\mathcal{PO}[\{C_0\}]).$ By the above corollary, GRZ and GL are in PSPACE.

Examples

Consider the logics K4, S4, Gödel-Löb logic GL, and Grzegorczyk logic GRZ. They are well-known to be PSPACE-decidable. Let us illustrate, how this fact follows from the above theorem.

Any K4-satisfiable formula is satisfiable at some finite transitive frame F such that the cardinality of any cluster in F does not exceed $\langle \varphi \rangle$. Put

$$\mathcal{F}_n^{\mathrm{K4}} = \{\mathsf{C}_0, \dots, \mathsf{C}_n\}, \quad \mathcal{F}_n^{\mathrm{S4}} = \{\mathsf{C}_1, \dots, \mathsf{C}_n\}.$$

Then for any φ we have:

 φ is K4-satisfiable iff φ is $\mathcal{PO}[\mathcal{F}_{\langle \varphi \rangle}^{\text{K4}}]$ -satisfiable, φ is S4-satisfiable iff φ is $\mathcal{PO}[\mathcal{F}_{l(\alpha)}^{S4}]$ -satisfiable.

Since the sequences $(\mathcal{F}_n^{\mathrm{K4}})_{n\in\mathbb{N}}$ and $(\mathcal{F}_n^{\mathrm{S4}})_{n\in\mathbb{N}}$ are moderate, then K4 and S4 are in PSPACE.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: logic LM

 $LM = K4 + \Diamond \top + \Diamond p_1 \land \Diamond p_2 \rightarrow \Diamond (\Diamond p_1 \land \Diamond p_2)$ (the logic of *interval inclusion*, compact inclusion, chronological future)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: logic LM

For a transitive finite frame F,

 $\mathsf{F} \models \mathrm{LM} \Leftrightarrow$ every its degenerate cluster has a unique successor C, and C is non-degenerate.

Example: logic LM

For a transitive finite frame F,

 $\mathsf{F} \vDash LM \Leftrightarrow \mathsf{every} \text{ its degenerate cluster has a unique successor C, and C is non-degenerate.}$

For $\mathcal{F} = \{C_0 + C \mid C \text{ is a finite cluster}\}$, $\mathcal{PO}[\mathcal{F}]$ is the class of all finite LM-frames (up to isomorphisms).

Example: logic LM

For a transitive finite frame F,

 $\mathsf{F} \vDash \mathrm{LM} \Leftrightarrow \mathsf{every} \text{ its degenerate cluster has a unique successor C, and C is non-degenerate.}$

For $\mathcal{F} = \{C_0 + C \mid C \text{ is a finite cluster}\}$, $\mathcal{PO}[\mathcal{F}]$ is the class of all finite LM-frames (up to isomorphisms).

LM has the FMP, thus: φ is LM-satisfiable $\Rightarrow \varphi$ is $\mathcal{PO}[\mathcal{F}_{\langle \varphi \rangle}]$ -satisfiable, where $\mathcal{F}_n = \{C_0 + C_1, \dots, C_0 + C_n\}$

Example: logic LM

For a transitive finite frame F,

 $\mathsf{F} \vDash \mathrm{LM} \Leftrightarrow \mathsf{every} \text{ its degenerate cluster has a unique successor C, and C is non-degenerate.}$

For $\mathcal{F} = \{C_0 + C \mid C \text{ is a finite cluster}\},\ \mathcal{PO}[\mathcal{F}]$ is the class of all finite LM-frames (up to isomorphisms).

LM has the FMP, thus: φ is LM-satisfiable $\Rightarrow \varphi$ is $\mathcal{PO}[\mathcal{F}_{\langle \varphi \rangle}]$ -satisfiable, where $\mathcal{F}_n = \{C_0 + C_1, \dots, C_0 + C_n\}$

The sequence $(\mathcal{F}_n)_{n \in \mathbb{N}}$ is moderate, thus LM is PSPACE-decidable.

Multimodal case

Decision procedures for ordinal sums of frames. Multimodal case

Ordinal sums of multimodal frames

$$\begin{split} \mathsf{I} &= (W, R) \text{ is a finite partial order, } W = \{w_1, \ldots, w_n\} \\ \mathsf{F}_1 &= (W_1, R_1^1, \ldots, R_N^1), \ldots, \mathsf{F}_n = (W_n, R_1^n, \ldots, R_N^n) \text{ are } N\text{-frames;} \\ 1 &\leq k \leq N. \qquad \mathsf{I}[k; (\mathsf{F}_1, \ldots, \mathsf{F}_m)/(w_1, \ldots, w_m)]: \end{split}$$

For a class \mathcal{F} of *N*-frames, put

$$\mathsf{G}[k;\mathcal{F}] = \{\mathsf{I}[k;(\mathsf{F}_1,\ldots,\mathsf{F}_m)/(w_1,\ldots,w_m)] \mid \mathsf{F}_1,\ldots,\mathsf{F}_n \in \mathcal{F}\},\$$

for a class $\mathcal I$ of finite partial orders, put

$$\mathcal{I}[k;\mathcal{F}] = \bigcup \{ \mathsf{I}[k;\mathcal{F}] \mid \mathsf{I} \in \mathcal{G} \}.$$

Decision procedures for ordinal sums of frames. Multimodal case

Lemma

Let \mathcal{F} be a class of N-frames, $1 \le k \le N$. If an N-formula φ is $\mathcal{PO}[k; \mathcal{F}]$ -satisfiable, then φ is $\mathcal{T}_{\langle \varphi \rangle, \langle \varphi \rangle}[k; \mathcal{F}]$ -satisfiable.

Definition

Let M be an N-model. A condition for M is a tuple $\overline{\Psi} = (\Psi_1, \dots, \Psi_N)$ of sets of N-formulas. For an N-formula φ and a point $w \in M$, we define the truth-relation $(M, w | \overline{\Psi}) \models \varphi$ (" φ is true at w in M under the condition $\overline{\Psi}$ "):

$$\begin{array}{lll} (\mathsf{M},w|\overline{\Psi})\vDash p & \Leftrightarrow & \mathsf{M},w\vDash p \\ (\mathsf{M},w|\overline{\Psi})\nvDash \bot & & \\ (\mathsf{M},w|\overline{\Psi})\vDash \varphi \to \psi & \Leftrightarrow & (\mathsf{M},w|\overline{\Psi})\nvDash \varphi \text{ or } (\mathsf{M},w|\overline{\Psi})\vDash \psi \\ (\mathsf{M},w|\overline{\Psi})\vDash \varphi \to \psi & \Leftrightarrow & (\mathsf{M},w|\overline{\Psi})\nvDash \varphi \text{ or } (\mathsf{M},w|\overline{\Psi})\vDash \psi \\ (\mathsf{M},w|\overline{\Psi})\vDash \varphi \leftarrow \psi_k \text{ or } \varphi \in W_k \text{ or$$

where R_1, \ldots, R_N are the accessability relations in M.

An *N*-frame $G = (W, R_1, ..., R_N)$ is called *rooted*, if for some $w \in W$ we have $\{w\} \cup R_1(w) \cup \cdots \cup R_N(w) = W$; *w* is called a *root* of G. For an *N*-formula φ , put

$$Sub^*(\varphi) = Sub(\varphi) \cup \{ \Diamond_i \psi \mid 1 \leq i, j \leq N, \ \Diamond_j \psi \in Sub(\varphi) \}.$$

Definition

. A sequence $(\mathcal{F}_n)_{n\in\mathbb{N}}$ of sets of rooted *N*-frames is called *d*-moderate, if there exists an algorithm such that for any *N*-formula φ and any $\Phi, \Psi_1, \ldots, \Psi_n \subseteq Sub^*(\varphi)$, it decides whether

$$\mathcal{F}_{|Sub^*(\varphi)|} \mid (\Psi_1, \ldots, \Psi_n) \Vdash \bigwedge \Phi$$

in polynomial space.

Theorem

If $(\mathcal{F}_n)_{n \in \mathbb{N}}$ is d-moderate sequence of sets of rooted N-frames, $1 \le k \le N$, P is a polynomial of degree d', then the sequence

$$(\mathcal{T}_{P(n),P(n)}[k;\mathcal{F}_n])_{n\in\mathbb{N}}$$

is $\max\{2 + d', d\}$ -moderate.

For an N-frame
$$F = (W, R_1, \dots, R_N)$$
 let

$$\mathsf{F}_+$$
 denote the (N+1)-frame ($W, arnothing, R_1, \ldots, R_N$),

$$\begin{split} &\mathsf{F}_{\infty} \text{ denote the frame } (W, R_1, \dots, R_N, \varnothing, \varnothing, \dots) \\ & \textit{Hereditary strict orders:} \\ & \mathcal{F}^{(1)} \text{ is the class of all finite strict partial orders;} \\ & \mathcal{F}^{(N+1)} = \mathcal{PO}[1; \mathcal{G}^{(N)}], \text{ where } \mathcal{G}^N = \{\mathsf{F}_+ \mid \mathsf{F} \in \mathcal{F}^{(N)}\}. \\ & \mathcal{F}^J = \{\mathsf{F}_{\infty} \mid \mathsf{F} \in \mathcal{F}^{(N)} \text{ for some } N\}. \end{split}$$

Theorem (Beklemishev, 2007)

There exists a polynomial-time translation f such that for any formula φ we have

$$\mathrm{GLP} \vdash \varphi \Leftrightarrow \mathcal{F}^{\mathrm{J}} \vDash f(\varphi).$$

Let $\mathcal{T}_{h,b}^{(1)} = \mathcal{T}_{h,b}[\{C_0\}]$, i.e., $\mathcal{T}_{h,b}^{(1)}$ is the class (up to isomorphisms) of all finite transitive irreflexive trees with the height not more then h and the branching not more then b. Put

$$\mathcal{T}_{h,b}^{(N+1)} = \mathcal{T}_{h,b}[1; \{\mathsf{F}_+ \mid \mathsf{F} \in \mathcal{T}_{h,b}^{(N)}\}].$$

(日) (同) (三) (三) (三) (○) (○)

Corollary

If an N-modal formula φ is \mathcal{F}^{J} -satisfiable, then φ is $\mathcal{T}_{N,N}^{(N)}$ -satisfiable.

Theorem

The satisfiability problem for \mathcal{F}^{J} is in PSPACE.

Theorem

Japaridze's Polymodal Logic is PSPACE-decidable.