PSPACE-decidability of Japaridze’s Polymodal Logic

Ilya Shapirovsky

Institute for Information Transmission Problems
Moscow, Russia
Satisfiability on ordinal sums of transitive frames

Ilya Shapiroovsky

Institute for Information Transmission Problems
Moscow, Russia
Japaridze’s Polymodal Logic

GLP is the normal propositional modal logic with countably many modalities:

\[\Box_i (\Box_i p \rightarrow p) \rightarrow \Box_i p \text{ for all } i \]
\[\Box_i p \rightarrow \Box_j p \text{ for all } i < j \]
\[\Diamond_i p \rightarrow \Box_j \Diamond_j p \text{ for all } i < j \]

[Japaridze, Ignatiev, Boolos, Beklemishev,...]
Japaridze’s Polymodal Logic
Japaridze’s Polymodal Logic
Japaridze’s Polymodal Logic
Japaridze’s Polymodal Logic
Main idea

If a class of frames can be represented as a class of ordinal sums of ”simple” frames, then it is also ”simple”.
Decision procedures for ordinal sums of frames
Decision procedures for ordinal sums of frames

1. Monomodal case
Decision procedures for ordinal sums of frames

1. Monomodal case
 - Ordinal sums of transitive frames
Decision procedures for ordinal sums of frames

1. Monomodal case
 - Ordinal sums of transitive frames
 - Truth-preserving transformations for ordinal sums of frames
Decision procedures for ordinal sums of frames

1. Monomodal case
 - Ordinal sums of transitive frames
 - Truth-preserving transformations for ordinal sums of frames
 - Conditional satisfiability and moderate classes of frames
Decision procedures for ordinal sums of frames

1. Monomodal case
 ▶ Ordinal sums of transitive frames
 ▶ Truth-preserving transformations for ordinal sums of frames
 ▶ Conditional satisfiability and moderate classes of frames

2. Polymodal case
Ordinal sums of frames
Ordinal sums of frames

$I = (W, R)$ is a finite partial order, $W = \{w_1, \ldots, w_n\}$

$F_1 = (V_1, S_1), \ldots, F_n = (V_n, S_n)$ are transitive frames
Ordinal sums of frames

\(I = (W, R) \) is a finite partial order, \(W = \{w_1, \ldots, w_n\} \)
\(F_1 = (V_1, S_1), \ldots, F_n = (V_n, S_n) \) are transitive frames

\[
I = (W, R) \quad \text{and} \quad I[(F_1, \ldots, F_m)/(w_1, \ldots, w_m)]
\]

\[
I[(F_1, \ldots, F_m)/(w_1, \ldots, w_m)] = (\overline{W}, \overline{R}):
\]
\[
\overline{W} = (\{w_1\} \times V_1) \cup \cdots \cup (\{w_m\} \times V_m)
\]
\[
(w', v') \overline{R} (w'', v'') \iff (w' \neq w'' \& w'Rw'') \quad \text{or} \quad (w' = w'' = w_i \& v'S_iv'')
\]
Ordinal sums of frames

$I = (W, R)$ is a finite partial order, $W = \{w_1, \ldots, w_n\}$

$F_1 = (V_1, S_1), \ldots, F_n = (V_n, S_n)$ are transitive frames

For a class \mathcal{F} of frames,

$I[\mathcal{F}] = \{I[(F_1, \ldots, F_m)/(w_1, \ldots, w_m)] \mid F_1, \ldots, F_m \in \mathcal{F}\}$
Ordinal sums of frames

$I = (W, R)$ is a finite partial order, $W = \{w_1, \ldots, w_n\}$
$F_1 = (V_1, S_1), \ldots, F_n = (V_n, S_n)$ are transitive frames

For a class \mathcal{F} of frames,
$I[\mathcal{F}] = \{I[(F_1, \ldots, F_m)/(w_1, \ldots, w_m)] \mid F_1, \ldots, F_m \in \mathcal{F}\}$

For a class \mathcal{I} of finite partial orders,
$\mathcal{I}[\mathcal{F}] = \bigcup\{I[\mathcal{F}] \mid I \in \mathcal{I}\}$
Ordinal sums of frames

Example: skeleton
Every transitive frame can be considered as an ordinal sum of its clusters.
Ordinal sums of frames

Example: transitive frames

\(\mathcal{PO} \) denotes the class of all finite (strict or non-strict) partial orders.

For \(n \geq 1 \), \(C_n = (W_n, W_n \times W_n) \), where \(W_n = \{1, \ldots, n\} \);
\(C_0 \) denotes the irreflexive singleton \((\{0\}, \emptyset)\).

Let \(\mathcal{F} = \{C_0, C_1, C_2 \ldots\} \), \(\mathcal{G} = \{C_1, C_2, \ldots\} \).
Then (up to isomorphisms):
\(\mathcal{PO}[\mathcal{F}] \) is the class of all finite \(K_4 \)-frames,
\(\mathcal{PO}[\mathcal{G}] \) is the class of all finite \(S_4 \)-frames.
Truth-preserving transformations for ordinal sums of frames

Treelike frames

\(\mathcal{T} \) denotes the class of all finite transitive trees.

Lemma

Let \(\mathcal{F} \) be a class of frames, \(I \) be a finite rooted partial order. Then for any \(H \in I[\mathcal{F}] \) there exists a tree \(T \in \mathcal{T} \) such that for some \(H' \in \mathcal{T}[\mathcal{F}] \) we have \(H' \rightarrow H \).

Corollary

\(\varphi \) is \(PO[\mathcal{F}] \)-satisfiable \(\Rightarrow \) \(\varphi \) is \(\mathcal{T}[\mathcal{F}] \)-satisfiable
Truth-preserving transformations for ordinal sums of frames

Restricting height and branching

\[\langle \varphi \rangle \] denotes the cardinality of \(Sub(\varphi) \).

Well-known fact: Any \(K_4 \)-satisfiable formula \(\varphi \) is satisfiable in some finite frame with the height and the branching of its skeleton not more then \(\langle \varphi \rangle \).
Truth-preserving transformations for ordinal sums of frames

Restricting height and branching

Let $\mathcal{T}_{n,b}$ denotes the class of transitive trees with the height not more then h and the branching not more then b:

$$\mathcal{T}_{h,b} = \{ T \in \mathcal{T} \mid Ht(T) \leq h, \ Br(T) \leq b \}.$$

Lemma

Let \mathcal{F} be a class of transitive frames. If a formula φ is $\mathcal{PO}[\mathcal{F}]$-satisfiable, then φ is $\mathcal{T}_{\langle \varphi \rangle, \langle \varphi \rangle}[\mathcal{F}]$-satisfiable.
Selective filtration

A model \(((W', R'), \theta')\) is a **weak submodel** of \(((W, R), \theta)\), if \(W' \subseteq W\), \(R' \subseteq R\), \(\theta(p) = \theta'(p) \cap W'\) for any propositional variable \(p\).

Definition

Let \(M\) be a model, \(\Psi\) a set of formulas closed under subformulas. A weak submodel \(M'\) of \(M\) is called a **selective filtration of \(M\) through \(\Psi\)**, if for any \(w \in M'\), for any formula \(\psi\), we have

\[
\Diamond \psi \in \Psi \& M, w \models \Diamond \psi \Rightarrow \exists u \in R'(x) \ M, u \models \psi,
\]

where \(R'\) is the accessibility relation of \(M'\).

Lemma

If \(M'\) is a selective filtration of \(M\) through \(\Psi\), then for any \(w \in M'\), for any \(\psi \in \Psi\), we have

\[
M, w \models \psi \iff M', w \models \psi.
\]
Conditional satisfiability

M is a Kripke model

\[
\begin{align*}
M, w \not\models \bot; \\
M, w \models p & \iff w \in \theta(p); \\
M, w \models \varphi \rightarrow \psi & \iff M, w \not\models \varphi \text{ or } M, w \models \psi; \\
M, w \models \Diamond \varphi & \iff \exists v (wRv \& M, v \models \varphi). \\
\end{align*}
\]

"\(\varphi \) is true at \(w \) in \(M \)."
Conditional satisfiability

M is a Kripke model, Ψ is a set of formulas

\[
\begin{align*}
(M, w|\Psi) \not\models \bot & \iff w \in \theta(p); \\
(M, w|\Psi) \models p & \iff (M, w|\Psi) \not\models \varphi \text{ or } (M, w|\Psi) \models \psi \\
(M, w|\Psi) \models \varphi \rightarrow \psi & \iff \exists v (wRv \& M, v \models \varphi) \\
(M, w|\Psi) \models \Diamond \varphi & \iff \varphi \in \Psi \text{ or } \Diamond \varphi \in \Psi
\end{align*}
\]

“φ is true at w in M under the condition Ψ ”.
Consider transitive models M_0, M, their ordinal sum $M_0 + M$, and a formula φ. Put

$$\Psi = \{ \psi \in \text{Sub}(\varphi) \mid M, \nu \models \psi \text{ for some } \nu \}$$

Then for any $w \in M_0$,

$$M_0 + M, w \models \varphi \iff (M_0, w|\Psi) \models \varphi$$

More generally: for any set of formulas Φ,

$$(M_0 + M, w|\Phi) \models \varphi \iff (M_0, w|\Psi \cup \Phi) \models \varphi$$

$$(M_0 + M, w|\Phi) \models \varphi \quad (M_0, w|\Psi \cup \Phi) \models \varphi$$
Moderate classes of frames

For a cone F, $F \models \varphi$ means that φ is satisfiable at a root of F;
$F \models \psi \models \varphi$ means $(M, w|\psi) \models \varphi$ for some model M based on F, where w is a root of F.
For a class of cones \mathcal{F}, $\mathcal{F} \models \psi \models \varphi$ means that $F \mid \psi \models \varphi$ for some $F \in \mathcal{F}$

Definition
A sequence $(\mathcal{F}_n)_{n \in \mathbb{N}}$ of sets of rooted frames is called d-moderate for $d \in \mathbb{N}$, if there exists an algorithm such that for any formula φ and any $\psi, \Phi \subseteq \text{Sub}(\varphi)$ it decides whether

$$\mathcal{F}_{\langle \varphi \rangle} \mid \psi \models \bigwedge \Phi$$

in space $O(\langle \varphi \rangle^d)$.
Moderate classes of frames: examples

Definition
A sequence \((\mathcal{F}_n)_{n \in \mathbb{N}}\) of sets of rooted frames is called \textit{d-moderate} for \(d \in \mathbb{N}\), if there exists an algorithm such that for any formula \(\varphi\) and any \(\psi, \Phi \subseteq \text{Sub}(\varphi)\) it decides whether

\[
\mathcal{F}_{\langle \varphi \rangle} \mid \psi \vdash \bigwedge \Phi
\]

in space \(O(\langle \varphi \rangle^d)\).
Moderate classes of frames: examples

Definition
A sequence \((\mathcal{F}_n)_{n \in \mathbb{N}}\) of sets of rooted frames is called *d-moderate* for \(d \in \mathbb{N}\), if there exists an algorithm such that for any formula \(\varphi\) and any \(\psi, \phi \subseteq \text{Sub}(\varphi)\) it decides whether

\[
\mathcal{F}_{\langle \varphi \rangle} \models \psi \models \bigwedge \phi
\]

in space \(O(\langle \varphi \rangle^d)\).

Example: \((\mathcal{F}_n)_{n \in \mathbb{N}}\) is moderate, if:

- \(\mathcal{F}_n\) is the set of all (non-degenerate) clusters with cardinality not more than \(n\):

 for all \(n\) \(\mathcal{F}_n = \{C_0, \ldots, C_n\}\) or for all \(n\) \(\mathcal{F}_n = \{C_1, \ldots, C_n\}\);

- \(\mathcal{F}_n\) consists of a single frame which is a singleton:

 for all \(n\) \(\mathcal{F}_n = \{C_0\}\) or for all \(n\) \(\mathcal{F}_n = \{C_1\}\).
Moderate classes of frames: examples

Definition
A sequence \((\mathcal{F}_n)_{n \in \mathbb{N}}\) of sets of rooted frames is called \(d\)-moderate for \(d \in \mathbb{N}\), if there exists an algorithm such that for any formula \(\varphi\) and any \(\Psi, \Phi \subseteq \text{Sub}(\varphi)\) it decides whether

\[
\mathcal{F}_{\langle \varphi \rangle} \models \Psi \supseteq \bigwedge \Phi
\]

in space \(O(\langle \varphi \rangle^d)\).

For classes \(\mathcal{F}, \mathcal{G}\), put

\[
\mathcal{F} + \mathcal{G} = \{ F + G \mid F \in \mathcal{F}, G \in \mathcal{G} \}
\]

Lemma
If \((\mathcal{F}_n)_{n \in \mathbb{N}}, (\mathcal{G}_n)_{n \in \mathbb{N}}\) are moderate, then \((\mathcal{F}_n + \mathcal{G}_n)_{n \in \mathbb{N}}\) are moderate.
Main lemma

If \((\mathcal{F}_n)_{n \in \mathbb{N}}\) is \(d\)-moderate sequence of sets of cones, and \(P\) is a polynomial of degree \(d'\), then the sequence \((\mathcal{T}_{P(n)}, P(n)[\mathcal{F}_n])_{n \in \mathbb{N}}\) is \(\max\{2 + d', d\}\)-moderate.
Algorithm

Let $\text{SatSimple}(\varphi, \Phi, \Psi)$ decide whether $\mathcal{F} | \psi \vdash \bigwedge \Phi$ for any φ, $\Phi, \Psi \subseteq \text{Sub}(\varphi)$ in space $f(\langle \varphi \rangle)$.

Then the following algorithm decides whether $\mathcal{T}_{h,b}[\mathcal{F}] | \psi \vdash \bigwedge \Phi$ for any φ, $\Phi, \Psi \subseteq \text{Sub}(\varphi)$, $h, b > 0$ in space $O(f(\langle \varphi \rangle) + \langle \varphi \rangle bh)$:

Function $\text{SatTree}(\varphi; \Phi, \Psi; h, b)$ returns boolean;
Begin
 if $\text{SatSimple}(\varphi, \Phi, \Psi)$ then return(true);
 if $h > 1$ then
 for every integer b' such that $1 \leq b' \leq b$
 for every $\Phi_1, \ldots, \Phi_{b'} \subseteq \text{Sub}(\varphi)$
 if $\bigwedge_{1 \leq j \leq b'} \text{SatTree}(\varphi, \psi_j, \Psi, h - 1, b)$ then
 if $\text{SatSimple}(\varphi, \Phi, \Psi \cup \psi_1 \cdots \cup \psi_{b'})$ then
 return(true);
 return(false);
 return(false);
End.
Algorithm

Lemma
Let F be a class of frames, and let $G \in \mathcal{I}_{h+1,b}[F]$ for some $h, b \geq 1$. Then G is either isomorphic to a frame $F \in F$ or isomorphic to a frame $F + (G_1 \sqcup \cdots \sqcup G_{b'})$, where $1 \leq b' \leq b$, $F \in F$, $G_1, \ldots, G_{b'} \in \mathcal{I}_{h,b}[F]$.
Semantic condition

Theorem

Suppose that a logic L is characterized by $PO[\mathcal{F}]$ for some class \mathcal{F}. If there exists a moderate sequence $(\mathcal{F}_n)_{n \in \mathbb{N}}$ such that $\mathcal{F}_n \subseteq \mathcal{F}$ for all $n \in \mathbb{N}$, and any L-satisfiable formula φ is $PO[\mathcal{F}(\varphi)]$-satisfiable, then L is in PSPACE.

Corollary

If $L = L(PO[\mathcal{F}])$ for some finite class of finite cones \mathcal{F}, then L is in PSPACE.
Examples
Consider the logics $\mathbf{K}4$, $\mathbf{S}4$, Gödel-Löb logic \mathbf{GL}, and Grzegorczyk logic \mathbf{GRZ}. They are well-known to be PSPACE-decidable. Let us illustrate, how this fact follows from the above theorem.
Examples
Consider the logics $K4$, $S4$, Gödel-Löb logic GL, and Grzegorczyk logic GRZ. They are well-known to be PSPACE-decidable. Let us illustrate, how this fact follows from the above theorem.

GRZ (GL) is the logic of all finite non-strict (strict) partial orders:
$GRZ = L(PO[\{C_1\}]), \quad GL = L(PO[\{C_0\}]).$

By the above corollary, GRZ and GL are in PSPACE.
Examples
Consider the logics $K4$, $S4$, Gödel-Löb logic GL, and Grzegorczyk logic GRZ. They are well-known to be PSPACE-decidable. Let us illustrate, how this fact follows from the above theorem.

Any $K4$-satisfiable formula is satisfiable at some finite transitive frame F such that the cardinality of any cluster in F does not exceed $\langle \varphi \rangle$.

Put
\[
F_{n}^{K4} = \{C_{0}, \ldots, C_{n}\}, \quad F_{n}^{S4} = \{C_{1}, \ldots, C_{n}\}.
\]

Then for any φ we have:

φ is $K4$-satisfiable iff φ is $PO[F_{\langle \varphi \rangle}^{K4}]$-satisfiable,

φ is $S4$-satisfiable iff φ is $PO[F_{\langle \varphi \rangle}^{S4}]$-satisfiable.

Since the sequences $(F_{n}^{K4})_{n\in\mathbb{N}}$ and $(F_{n}^{S4})_{n\in\mathbb{N}}$ are moderate, then $K4$ and $S4$ are in PSPACE.
Example: logic LM

\[
LM = K4 + \Box \top + \Box p_1 \land \Box p_2 \rightarrow \Box (\Box p_1 \land \Box p_2) \text{ (the logic of interval inclusion, compact inclusion, chronological future)}
\]
Example: logic \mathcal{LM}

For a transitive finite frame F,

$F \models \mathcal{LM} \iff$ every its degenerate cluster has a unique successor C, and C is non-degenerate.
Example: logic LM

For a transitive finite frame F, $F \models \text{LM} \iff$ every its degenerate cluster has a unique successor C, and C is non-degenerate.

For $\mathcal{F} = \{C_0 + C \mid C$ is a finite cluster$\}$, $\mathcal{PO}[\mathcal{F}]$ is the class of all finite LM-frames (up to isomorphisms).
Example: logic LM

For a transitive finite frame F, $F \vdash LM \iff$ every its degenerate cluster has a unique successor C, and C is non-degenerate.

For $F = \{C_0 + C \mid C \text{ is a finite cluster}\}$, $\mathcal{PO}[F]$ is the class of all finite LM-frames (up to isomorphisms).

LM has the FMP, thus: φ is LM-satisfiable \Rightarrow φ is $\mathcal{PO}[F_{\langle \varphi \rangle}]$-satisfiable, where $F_n = \{C_0 + C_1, \ldots, C_0 + C_n\}$
Example: logic LM

For a transitive finite frame \(F \),
\(F \models \text{LM} \iff \) every its degenerate cluster has a unique successor \(C \), and \(C \) is non-degenerate.

\[
\begin{array}{c}
\circ \\
/ \\
\circ \\
/ \\
\circ \\
\end{array}
\]

For \(F = \{ C_0 + C \mid C \text{ is a finite cluster} \} \),
\(\mathcal{PO}[F] \) is the class of all finite LM-frames (up to isomorphisms).

LM has the FMP, thus: \(\varphi \) is LM-satisfiable \(\Rightarrow \) \(\varphi \) is \(\mathcal{PO}[F_{\langle \varphi \rangle}] \)-satisfiable,
where \(F_n = \{ C_0 + C_1, \ldots, C_0 + C_n \} \)

The sequence \((F_n)_{n \in \mathbb{N}} \) is moderate, thus LM is PSPACE-decidable.
Multimodal case
Ordinal sums of multimodal frames

$I = (W, R)$ is a finite partial order, $W = \{w_1, \ldots, w_n\}$

$F_1 = (W_1, R_1^1, \ldots, R_1^N), \ldots, F_n = (W_n, R_n^1, \ldots, R_n^N)$ are N-frames;

$1 \leq k \leq N$. $I[k; (F_1, \ldots, F_m)/(w_1, \ldots, w_m)]$:

For a class \mathcal{F} of N-frames, put

$$G[k; \mathcal{F}] = \{I[k; (F_1, \ldots, F_m)/(w_1, \ldots, w_m)] \mid F_1, \ldots, F_n \in \mathcal{F}\},$$

for a class \mathcal{I} of finite partial orders, put

$$\mathcal{I}[k; \mathcal{F}] = \bigcup\{I[k; \mathcal{F}] \mid I \in G\}.$$
Lemma

Let \mathcal{F} be a class of N-frames, $1 \leq k \leq N$. If an N-formula φ is $PO[k; \mathcal{F}]$-satisfiable, then φ is $T_{\langle \varphi \rangle, \langle \varphi \rangle}[k; \mathcal{F}]$-satisfiable.
Definition
Let M be an N-model. A condition for M is a tuple $\overline{\psi} = (\psi_1, \ldots, \psi_N)$ of sets of N–formulas. For an N–formula φ and a point $w \in M$, we define the truth-relation $(M, w|\overline{\psi}) \models \varphi$ (“φ is true at w in M under the condition $\overline{\psi}$”):

$$(M, w|\overline{\psi}) \models \top \quad \Leftrightarrow \quad M, w \models \top$$

$$(M, w|\overline{\psi}) \not\models \bot \quad \Leftrightarrow \quad (M, w|\overline{\psi}) \not\models \varphi \text{ or } (M, w|\overline{\psi}) \models \psi$$

$$(M, w|\overline{\psi}) \models \Diamond_k \varphi \quad \Leftrightarrow \quad \varphi \in \psi_k \text{ or } \Diamond_k \varphi \in \psi_k \text{ or }$$

for some $v \in R_k(w)$ we have $(M, w|\psi_k) \models \varphi$,

where R_1, \ldots, R_N are the accessibility relations in M.
An N-frame $G = (W, R_1, \ldots, R_N)$ is called \textit{rooted}, if for some $w \in W$ we have $\{w\} \cup R_1(w) \cup \cdots \cup R_N(w) = W$; w is called a \textit{root} of G.

For an N-formula φ, put

$$Sub^*(\varphi) = Sub(\varphi) \cup \{\lozenge_i \psi \mid 1 \leq i, j \leq N, \lozenge_j \psi \in Sub(\varphi)\}.$$

\textbf{Definition}

A sequence $(\mathcal{F}_n)_{n \in \mathbb{N}}$ of sets of rooted N-frames is called \textit{d-moderate}, if there exists an algorithm such that for any N-formula φ and any $\Phi, \psi_1, \ldots, \psi_n \subseteq Sub^*(\varphi)$, it decides whether

$$\mathcal{F}_{|Sub^*(\varphi)|} \models (\psi_1, \ldots, \psi_n) \models \bigwedge \Phi$$

in polynomial space.
Theorem

If \((F_n)_{n \in \mathbb{N}}\) is \(d\)-moderate sequence of sets of rooted \(N\)-frames, \(1 \leq k \leq N\), \(P\) is a polynomial of degree \(d'\), then the sequence

\[
(T_{P(n), P(n)}[k; F_n])_{n \in \mathbb{N}}
\]

is \(\max\{2 + d', d\}\)-moderate.
Japaridze’s Polymodal Logic

For an N-frame $F = (W, R_1, \ldots, R_N)$ let

$F_+ \text{ denote the } (N+1)\text{-frame } (W, \emptyset, R_1, \ldots, R_N),$

$F_\infty \text{ denote the frame } (W, R_1, \ldots, R_N, \emptyset, \emptyset, \ldots)$

Hereditary strict orders:

$\mathcal{F}^{(1)}$ is the class of all finite strict partial orders;

$\mathcal{F}^{(N+1)} = \mathcal{PO}[1; \mathcal{G}^{(N)}], \text{ where } \mathcal{G}^N = \{F_+ \mid F \in \mathcal{F}^{(N)}\}.$

$\mathcal{F}^J = \{F_\infty \mid F \in \mathcal{F}^{(N)} \text{ for some } N\}.$

Theorem (Beklemishev, 2007)

There exists a polynomial-time translation f such that for any formula φ we have

$$GLP \vdash \varphi \iff \mathcal{F}^J \models f(\varphi).$$
Let $\mathcal{T}^{(1)}_{h,b} = \mathcal{T}_{h,b}[\{C_0\}]$, i.e., $\mathcal{T}^{(1)}_{h,b}$ is the class (up to isomorphisms) of all finite transitive irreflexive trees with the height not more than h and the branching not more than b. Put

$$\mathcal{T}^{(N+1)}_{h,b} = \mathcal{T}_{h,b}[1; \{F_+ \mid F \in \mathcal{T}^{(N)}_{h,b}\}].$$

Corollary

If an N-modal formula φ is \mathcal{F}^J-satisfiable, then φ is $\mathcal{T}^{(N)}_{N,N}$-satisfiable.

Theorem

The satisfiability problem for \mathcal{F}^J is in PSPACE.

Theorem

Japaridze’s Polymodal Logic is PSPACE-decidable.