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Japaridze’s Polymodal Logic

GLP is the normal propositional modal logic with countably many
modalities:

�i(�ip → p) → �ip for all i

�ip → �jp for all i < j

♦ip → �j♦jp for all i < j

[Japaridze, Ignatiev, Boolos, Beklemishev,...]
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[Beklemishev, 2007] Hereditary orders.



Main idea

If a class of frames can be represented as a class of ordinal sums of
”simple” frames, then it is also ”simple”.
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2. Polymodal case
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Ordinal sums of frames

I = (W ,R) is a finite partial order, W = {w1, . . . ,wn}
F1 = (V1,S1), . . . ,Fn = (Vn,Sn) are transitive frames

I[(F1, . . . ,Fm)/(w1, . . . ,wm)] = (W ,R):

W = ({w1} × V1) ∪ · · · ∪ ({wm} × Vm)

(w ′, v ′)R(w ′′, v ′′) ⇔ (w ′ 6= w ′′ & w ′Rw ′′) or (w ′ = w ′′ = wi & v ′Siv
′′)
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Ordinal sums of frames

I = (W ,R) is a finite partial order, W = {w1, . . . ,wn}
F1 = (V1,S1), . . . ,Fn = (Vn,Sn) are transitive frames

For a class F of frames,

I[F ] = {I[(F1, . . . ,Fm)/(w1, . . . ,wm)] | F1, . . . ,Fm ∈ F}

For a class I of finite partial orders,

I[F ] =
⋃
{I[F ] | I ∈ I}
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Ordinal sums of frames
Example: skeleton

Every transitive frame can be considered as an ordinal sum of its clusters.
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Ordinal sums of frames
Example: transitive frames

PO denotes the class of all finite (strict or non-strict) partial orders.

For n ≥ 1, Cn = (Wn,Wn × Wn), where Wn = {1, . . . , n};
C0 denotes the irreflexive singleton ({0},∅).

Let F = {C0,C1,C2 . . . }, G = {C1,C2, . . . }.
Then (up to isomorphisms):
PO[F ] is the class of all finite K4-frames,
PO[G] is the class of all finite S4-frames.
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Truth-preserving transformations for ordinal sums of frames
Treelike frames

T denotes the class of all finite transitive trees.

Lemma
Let F be a class of frames, I be a finite rooted partial order. Then for any

H ∈ I[F ] there exists a tree T ∈ T such that for some H′ ∈ T [F ] we have

H′ � H.

Corollary

ϕ is PO[F ]-satisfiable ⇒ ϕ is T [F ]-satisfiable
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Truth-preserving transformations for ordinal sums of frames
Restricting height and branching

〈ϕ〉 denotes the cardinality of Sub(ϕ).

Well-known fact: Any K4-satisfiable formula ϕ is satisfiable in some finite
frame with the height and the branching of its skeleton not more then 〈ϕ〉.
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Truth-preserving transformations for ordinal sums of frames
Restricting height and branching

Let Tn,b denotes the class of transitive trees with the height not more then
h and the branching not more then b:

Th,b = {T ∈ T | Ht(T) ≤ h, Br(T) ≤ b}.

Lemma
Let F be a class of transitive frames. If a formula ϕ is PO[F ]-satisfiable,

then ϕ is T〈ϕ〉,〈ϕ〉[F ]-satisfiable.
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Selective filtration

A model ((W ′,R ′), θ′) is a weak submodel of ((W ,R), θ), if
W ′ ⊆ W , R ′ ⊆ R ,
θ(p) = θ′(p) ∩ W ′ for any propositional variable p.

Definition
Let M be a model, Ψ a set of formulas closed under subformulas. A weak
submodel M′ of M is called a selective filtration of M through Ψ , if for
any w ∈ M′, for any formula ψ, we have

♦ψ ∈ Ψ & M,w � ♦ψ ⇒ ∃u ∈ R ′(x) M, u � ψ,

where R ′ is the accessability relation of M′.

Lemma
If M′ is a selective filtration of M through Ψ, then for any w ∈ M′, for any

ψ ∈ Ψ, we have

M,w � ψ ⇔ M′,w � ψ.
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Conditional satisfiability

M is a Kripke model

M,w 6� ⊥;
M,w � p ⇔ w ∈ θ(p);
M,w � ϕ→ ψ ⇔ M,w 6� ϕ or M,w � ψ;
M,w � ♦ϕ ⇔ ∃v(wRv & M, v � ϕ).

”ϕ is true at w in M”.
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Conditional satisfiability

M is a Kripke model, Ψ is a set of formulas

(M,w |Ψ) 6� ⊥
(M,w |Ψ) � p ⇔ w ∈ θ(p);
(M,w |Ψ) � ϕ→ ψ ⇔ (M,w |Ψ) 6� ϕ or (M,w |Ψ) � ψ
(M,w |Ψ) � ♦ϕ ⇔ ∃v(wRv & M, v � ϕ)

or ϕ ∈ Ψ or ♦ϕ ∈ Ψ

“ϕ is true at w in M under the condition Ψ ”.
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Consider transitive models M0, M,
their ordinal sum M0 + M, and a
formula ϕ. Put

Ψ = {ψ ∈ Sub(ϕ) | M, v � ψ for some v}

Then for any w ∈ M0,

M0 + M,w � ϕ⇔ (M0,w |Ψ) � ϕ

More generally: for any set of
formulas Φ,

(M0+M,w |Φ) � ϕ⇔ (M0,w |Ψ∪Φ) � ϕ
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Moderate classes of frames

For a cone F, F  ϕ means that ϕ is satisfiable at a root of F;
F | Ψ  ϕ means (M,w |Ψ) � ϕ for some model M based on F, where w is
a root of F.
For a class of cones F , F | Ψ  ϕ means that F | Ψ  ϕ for some F ∈ F

Definition
A sequence (Fn)n∈N

of sets of rooted frames is called d-moderate for

d ∈ N, if there exists an algorithm such that for any formula ϕ and any

Ψ,Φ ⊆ Sub(ϕ) it decides whether

F〈ϕ〉 | Ψ 
∧

Φ

in space O(〈ϕ〉d ).
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Moderate classes of frames: examples
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Moderate classes of frames: examples

Definition
A sequence (Fn)n∈N

of sets of rooted frames is called d-moderate for

d ∈ N, if there exists an algorithm such that for any formula ϕ and any

Ψ,Φ ⊆ Sub(ϕ) it decides whether

F〈ϕ〉 | Ψ 
∧

Φ

in space O(〈ϕ〉d ).

Example: (Fn)n∈N
is moderate, if:

I Fn is the set of all (non-degenerate) clusters with cardinality not
more then n:
for all n Fn = {C0, . . . ,Cn} or for all n Fn = {C1, . . . ,Cn};

I Fn consists of a single frame which is a singleton:
for all n Fn = {C0} or for all n Fn = {C1}.
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Moderate classes of frames: examples

Definition
A sequence (Fn)n∈N

of sets of rooted frames is called d-moderate for

d ∈ N, if there exists an algorithm such that for any formula ϕ and any

Ψ,Φ ⊆ Sub(ϕ) it decides whether

F〈ϕ〉 | Ψ 
∧

Φ

in space O(〈ϕ〉d ).

For classes F , G, put

F + G = {F + G | F ∈ F , G ∈ G}

Lemma
If (Fn)n∈N

, (Gn)n∈N
are moderate, then (Fn + Gn)n∈N

are moderate.
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Main lemma

If (Fn)n∈N
is d -moderate sequence of sets of cones, and P is a polynomial

of degree d ′, then the sequence (TP(n),P(n)[Fn])n∈N
is

max{2 + d ′, d}-moderate.
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Algorithm
Let SatSimple(ϕ,Φ,Ψ) decide whether F | Ψ 

∧
Φ for any ϕ,

Φ,Ψ ⊆ Sub(ϕ) in space f (〈ϕ〉).

Then the following algorithm decides whether Th,b[F ] | Ψ 
∧

Φ for any
ϕ, Φ,Ψ ⊆ Sub(ϕ), h, b > 0 in space O (f (〈ϕ〉) + 〈ϕ〉bh):

Function SatTree(ϕ; Φ,Ψ; h, b) returns boolean;
Begin

if SatSimple(ϕ,Φ,Ψ) then return(true);
if h > 1 then

for every integer b′ such that 1 ≤ b′ ≤ b

for every Φ1, . . . ,Φb′ ⊆ Sub(ϕ)
if

∧
1≤j≤b′

SatTree(ϕ,Ψj ,Ψ, h − 1, b) then

if SatSimple(ϕ,Φ,Ψ ∪ Ψ1 · · · ∪ Ψb′) then
return(true);

return(false);
End.
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Algorithm

Lemma
Let F be a class of frames, and let G ∈ Th+1,b[F ] for some h, b ≥ 1. Then

G is either isomorphic to a frame F ∈ F or isomorphic to a frame

F + (G1 t · · · t Gb′), where 1 ≤ b′ ≤ b, F ∈ F , G1, . . .Gb′ ∈ Th,b[F ].
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Semantic condition

Theorem
Suppose that a logic L is characterized by PO[F ] for some class F . If

there exists a moderate sequence (Fn)n∈N
such that Fn ⊆ F for all n ∈ N,

and any L-satisfiable formula ϕ is PO[F〈ϕ〉]-satisfiable, then L is in

PSPACE.

Corollary

If L = L(PO[F ]) for some finite class of finite cones F , then L is in

PSPACE.
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Examples
Consider the logics K4,S4 , Gödel-Löb logic GL, and Grzegorczyk logic
GRZ. They are well-known to be PSPACE-decidable. Let us illustrate,
how this fact follows from the above theorem.
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Examples
Consider the logics K4,S4 , Gödel-Löb logic GL, and Grzegorczyk logic
GRZ. They are well-known to be PSPACE-decidable. Let us illustrate,
how this fact follows from the above theorem.

GRZ (GL) is the logic of all finite non-strict (strict) partial orders:
GRZ = L(PO[{C1}]), GL = L(PO[{C0}]) .
By the above corollary, GRZ and GL are in PSPACE.



Decision procedures for ordinal sums of frames. Monomodal case Conditional satisfiability and moderate classes of frames

Examples
Consider the logics K4,S4 , Gödel-Löb logic GL, and Grzegorczyk logic
GRZ. They are well-known to be PSPACE-decidable. Let us illustrate,
how this fact follows from the above theorem.

Any K4-satisfiable formula is satisfiable at some finite transitive frame F
such that the cardinality of any cluster in F does not exceed 〈ϕ〉.
Put

FK4
n = {C0, . . . ,Cn}, FS4

n = {C1, . . . ,Cn}.

Then for any ϕ we have:

ϕ is K4-satisfiable iff ϕ is PO[FK4

〈ϕ〉]-satisfiable,

ϕ is S4-satisfiable iff ϕ is PO[FS4

〈ϕ〉]-satisfiable.

Since the sequences (FK4
n )n∈N

and (FS4
n )n∈N

are moderate, then K4 and
S4 are in PSPACE.
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Example: logic LM

LM = K4+♦>+♦p1∧♦p2 → ♦(♦p1∧♦p2) (the logic of interval inclusion,
compact inclusion, chronological future)
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non-degenerate.
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Example: logic LM
For a transitive finite frame F,
F � LM ⇔ every its degenerate cluster has a unique successor C, and C is
non-degenerate.

For F = {C0 + C | C is a finite cluster},
PO[F ] is the class of all finite LM-frames (up to isomorphisms).

LM has the FMP, thus: ϕ is LM-satisfiable ⇒ ϕ is PO[F〈ϕ〉]-satisfiable,
where Fn = {C0 + C1, . . . ,C0 + Cn}

The sequence (Fn)n∈N
is moderate, thus LM is PSPACE-decidable.
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Ordinal sums of multimodal frames
I = (W ,R) is a finite partial order, W = {w1, . . . ,wn}
F1 = (W1,R

1
1 , . . . ,R

1
N), . . . ,Fn = (Wn,R

n
1 , . . . ,R

n
N) are N-frames;

1 ≤ k ≤ N. I[k ; (F1, . . . ,Fm)/(w1, . . . ,wm)]:

For a class F of N-frames, put

G[k ;F ] = {I[k ; (F1, . . . ,Fm)/(w1, . . . ,wm)] | F1, . . . ,Fn ∈ F},

for a class I of finite partial orders, put

I[k ;F ] =
⋃

{I[k ;F ] | I ∈ G}.
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Lemma
Let F be a class of N-frames, 1 ≤ k ≤ N. If an N-formula ϕ is

PO[k ;F ]-satisfiable, then ϕ is T〈ϕ〉,〈ϕ〉[k ;F ]-satisfiable.



Decision procedures for ordinal sums of frames. Multimodal case

Definition
Let M be an N-model. A condition for M is a tuple Ψ = (Ψ1, . . . ,ΨN) of
sets of N−formulas. For an N-formula ϕ and a point w ∈ M, we define
the truth-relation (M,w |Ψ) � ϕ (“ϕ is true at w in M under the condition

Ψ”):

(M,w |Ψ) � p ⇔ M,w � p

(M,w |Ψ) 6� ⊥

(M,w |Ψ) � ϕ→ ψ ⇔ (M,w |Ψ) 6� ϕ or (M,w |Ψ) � ψ

(M,w |Ψ) � ♦kϕ ⇔ ϕ ∈ Ψk or ♦kϕ ∈ Ψk or

for some v ∈ Rk(w) we have (M,w |Ψk) � ϕ,

where R1, . . . ,RN are the accessability relations in M.
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An N-frame G = (W ,R1, . . . ,RN) is called rooted, if for some w ∈ W we
have {w} ∪ R1(w) ∪ · · · ∪ RN(w) = W ; w is called a root of G.
For an N-formula ϕ, put

Sub∗(ϕ) = Sub(ϕ) ∪ {♦iψ | 1 ≤ i , j ≤ N, ♦jψ ∈ Sub(ϕ)}.

Definition
. A sequence (Fn)n∈N

of sets of rooted N-frames is called d-moderate, if
there exists an algorithm such that for any N-formula ϕ and any
Φ,Ψ1, . . . ,Ψn ⊆ Sub∗(ϕ), it decides whether

F|Sub∗(ϕ)| | (Ψ1, . . . ,Ψn) 
∧

Φ

in polynomial space.
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Theorem
If (Fn)n∈N

is d-moderate sequence of sets of rooted N-frames, 1 ≤ k ≤ N,

P is a polynomial of degree d ′, then the sequence

(TP(n),P(n)[k ;Fn])n∈N

is max{2 + d ′, d}-moderate.
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Japaridze’s Polymodal Logic

For an N-frame F = (W ,R1, . . . ,RN) let

F+ denote the (N+1)-frame (W ,∅,R1, . . . ,RN),

F∞ denote the frame (W ,R1, . . . ,RN ,∅,∅, . . . )
Hereditary strict orders:
F (1) is the class of all finite strict partial orders;
F (N+1) = PO[1;G(N)], where GN = {F+ | F ∈ F (N)}.
FJ={F∞ | F ∈ F (N) for some N}.

Theorem (Beklemishev, 2007)

There exists a polynomial-time translation f such that for any formula ϕ
we have

GLP ` ϕ⇔ FJ � f (ϕ).



Decision procedures for ordinal sums of frames. Multimodal case

Let T
(1)
h,b = Th,b[{C0}], i.e., T

(1)
h,b is the class (up to isomorphisms) of all

finite transitive irreflexive trees with the height not more then h and the
branching not more then b. Put

T
(N+1)
h,b = Th,b[1; {F+ | F ∈ T

(N)
h,b }].

Corollary

If an N-modal formula ϕ is FJ-satisfiable, then ϕ is T
(N)
N,N -satisfiable.

Theorem
The satisfiability problem for F J is in PSPACE.

Theorem
Japaridze’s Polymodal Logic is PSPACE-decidable.
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