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Introduction
Setting the Problem

Paraconsistent Modal Logics (pML)
Are obtained by adding to a paraconsistent logic the modal operators
� (necessity) and ♦ (possibility).

⇒ They combine the expressive power of modal logics with the
non–explosive character of paraconsistent logics.

⇒ They seem well–suited to explicate normative reasoning,
reasoning about beliefs, about knowledge,...
= often inconsistent, but not trivial.

Problem
pML avoid explosion by invalidating some of the classical rules of
inference.

e.g. Disjunctive Syllogism, Modus Ponens, de Morgan’s laws,...
⇒ too weak to capture actual reasoning!
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Introduction
Aim of This Talk

Notice
The above problem is not specific to pML, but applies to
paraconsistent logics in general.

↔ notable exception: inconsistency–adaptive logics!

Inconsistency–Adaptive Logics (iAL)
iAL avoid explosion by invalidating applications of some of the
classical rules of inference.
⇒ These rules of inference are not valid in general, but they are not

invalid in general either.
⇒ Closer to actual reasoning!

Aim
To extend the inconsistency–adaptive framework to modal logics.

⇒ Inconsistency–adaptive modal logics!!
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Paraconsistent Modal Logics
In General

Some Restrictions
I will only consider:

normal modal logics,

that have at least a reflexive accessibility relation, and
that contain all the de Morgan laws (incl. the modal analogues)

Example

The logic TūNs

= The modal extension of the paraconsistent logic CLūNs
(equivalent to Priest’s LP).

= The paraconsistent counterpart of the modal logic T.
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Paraconsistent Modal Logics
The Logic TūNs: Language Schema

The Modal Language LM

language letters logical symbols set of formulas
LM S ∼,∧,∨,⊃,≡,�,♦ WM

Definition
A ∨ B =df ∼(∼A ∧ ∼B)

A ⊃ B =df ∼A ∨ B
A ≡ B =df (A ⊃ B) ∧ (B ⊃ A)

♦A =df ∼�∼A

Definition
S∼ = {∼A | A ∈ S}
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Paraconsistent Modal Logics
The Logic TūNs: Semantics

TūNs–models
A TūNs–model M is a 4–tuple < W , w0, R, v >, with

W a set of worlds,
w0 the actual world,
R a reflexive accessibility relation, and
v an assignment function.
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Paraconsistent Modal Logics
The Logic TūNs: Semantics

The Assignment Function
AP1 v : S 7→ {0, 1}.
AP2 v : S∼ 7→ {0, 1}.

The Valuation Functions
SP1 vM : WM 7→ {0, 1}.
SP2 For A ∈ S: vM(A) = 1 iff v(A) = 1.
SP3 For A ∈ S: vM(∼A) = 1 iff vM(A) = 0 or v(∼A) = 1.
SP4 vM(∼∼A) = 1 iff vM(A) = 1.
SP5 vM(A ∧ B) = 1 iff vM(A) = 1 and vM(B) = 1.
SP6 vM(∼(A ∧ B)) = 1 iff vM(∼A) = 1 or vM(∼B) = 1.
SP7 vM(�A, w) = 1 iff ∀w ′ ∈ W , if Rww ′ then vM(A, w ′) = 1.
SP8 vM(∼�A, w) = 1 iff ∃w ′ ∈ W such that Rww ′ and vM(∼A, w ′) = 1.
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Paraconsistent Modal Logics
The Logic TūNs: Semantics

Truth in a Model
A is true in a TūNs–model M iff vM(A, w0) = 1.

Models of a Premise Set
The TūNs–model M is a model of the premise set Γ iff for all B ∈ Γ, it
is the case that vM(B, w0) = 1.

Semantic Consequence
Γ �TūNs A iff A is true in all TūNs–models of the premise set Γ.
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Inconsistency–Adaptive Modal Logics (iAML)
Main Idea

Main Idea
iAML interpret a premise set as consistent as possible.

⇒ Inconsistencies are supposed to be false, unless or until proven
otherwise.

iAL if A ∨ (B ∧ ∼B) is derivable then A is supposed to be
derivable as well, unless or until it can be proven that
B ∧ ∼B might be true.

⇒ Only the problematic applications of some of the classical rules
of inference are invalid.

Problem
What does it mean to interpret a premise set as consistent as
possible in a modal setting?
⇒ As much reachable inconsistencies as possible are supposed to

be false!
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Inconsistency–Adaptive Modal Logics (iAML)
Main Idea

Reachable Inconsistencies
Inconsistencies that are true in worlds that are reachable from the
actual world w0.

⇒ Captured by formulas of the form ♦...♦︸ ︷︷ ︸ (A ∧ ∼A)︸ ︷︷ ︸, with A ∈ S.

| ↓
↓ Inconsistency

Reachability

Two Possible Ways to Proceed
Consider the following two formulas:

♦(A ∧ ∼A) : ⇒ ♦♦(A ∧ ∼A)

1 As both formulas state that the inconsistency A ∧ ∼A is reachable, they
should be treated on a par (Semantic perspective).

2 As both formulas are not equivalent, they express a difference and
should not be treated on a par (Syntactic perspective).
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Inconsistency–Adaptive Modal Logics
General Characterization

Adaptive Logics (AL)

1. A Lower Limit Logic (LLL)
The LLL determines the inference rules that can be applied
unrestrictedly.
All LLL–consequences are AL–consequences as well.

2. A Set of Abnormalities Ω

Elements of Ω are interpreted as false as much as possible
The result: some conditionally derived consequences

I
A ∨ B∈Ω

A
, unless B cannot be considered as false.

3. An Adaptive Strategy
The strategy determines which of the conditionally derived
formulas have to be withdrawn.
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Inconsistency–Adaptive Modal Logics
General Characterization

Example: the Logic iATūNsn

1. The Lower Limit Logic

2. The Set of Abnormalities Ω

3. The Adaptive Strategy

Generalizing the Approach
For all other iAML, the characterization is completely equivalent!
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Inconsistency–Adaptive Modal Logics
The Logic iATūNsn: Semantics — Semantic Consequence

Preferential Semantics
The iATūNsn–consequences of a premise set Γ are defined by
reference to sets of preferred TūNs–models of Γ.
= the selected sets of TūNs–models of Γ.

Definition
Γ �iATūNsn A iff there is at least one selected set Σ of TūNs–models of
Γ such that A is true in all models that are in Σ.

H. Lycke (Ghent University) Inconsistency–Adaptive Modal Logics AiML 2008, Melbourne 23 / 30



Inconsistency–Adaptive Modal Logics
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Inconsistency–Adaptive Modal Logics
The Logic iATūNsn: Semantics — Selecting the Models

The Abnormal Part of a Model
Ab(M) = {A ∈ Ω | vM(A, w0) = 1}

Minimally Abnormal Models
A TūNs–model M of Γ is minimally abnormal iff there is no
TūNs–model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

The Selected Sets
All minimally abnormal models that verify the same abnormalities are
grouped together in distinct sets, the selected sets of a premise set.

Intuitive meaning: Each selected set Σ captures a minimally
abnormal interpretation of the premise set
(= a maximally consistent interpretation).
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The Logic iATūNsn: Semantics — Selecting the Models

The Abnormal Part of a Model
Ab(M) = {A ∈ Ω | vM(A, w0) = 1}

Minimally Abnormal Models
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Inconsistency–Adaptive Modal Logics
The Logic iATūNsn: Semantics — Selecting the Models

About Consistency
Only those TūNs–models of a premise set are taken into
consideration that verify as less reachable inconsistencies as
possible.

⇒ In case Γ is consistent, the minimally abnormal models will be
those models that do not verify any reachable inconsistencies.
= the T–models of Γ!!

⇒ The logic T is the Upper Limit Logic of the logic iATūNsn.
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Inconsistency–Adaptive Modal Logics
The Logic iATūNsn: Example

Theorem
Γ �iATūNsn A iff there is a finite ∆ ⊂ Ω such that

Γ �TūNs A ∨
∨

(∆), and
Γ 2TūNs

∨
(∆).

Example

Γ = {♦(p ∨ (q ∧ ∼q)),♦♦(q ∧ ∼q),�(r ∧ ∼r)}

⇒ Γ �iATūNsn ♦p, because

Γ �TūNs ♦p ∨ ♦(q ∧ ∼q), and
Γ 2TūNs ♦(q ∧ ∼q).

⇒ Γ 2iATūNsn �p, because although

Γ �TūNs �p ∨ ♦(r ∧ ∼r), also
Γ �TūNs ♦(r ∧ ∼r).
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Inconsistency–Adaptive Modal Logics
The Logic iAS4ūNsn: Example

Theorem
Γ �iAS4ūNsn A iff there is a finite ∆ ⊂ Ω such that

Γ �S4ūNs A ∨
∨

(∆), and
Γ 2S4ūNs

∨
(∆).

Example

Γ = {♦(p ∨ (q ∧ ∼q)),♦♦(q ∧ ∼q),�(r ∧ ∼r)}

⇒ Γ 2iAS4ūNsn ♦p, because although

Γ �S4ūNs ♦p ∨ ♦(q ∧ ∼q), also
Γ �S4ūNs ♦(q ∧ ∼q). R is transitive!

⇒ Γ 2iAS4ūNsn �p, because although

Γ �S4ūNs �p ∨ ♦(r ∧ ∼r) , also
Γ �S4ūNs ♦(r ∧ ∼r).
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Γ �S4ūNs ♦(r ∧ ∼r).

H. Lycke (Ghent University) Inconsistency–Adaptive Modal Logics AiML 2008, Melbourne 28 / 30



Inconsistency–Adaptive Modal Logics
The Logic iAKūNsn: Example

Theorem
Γ �iAKūNsn A iff there is a finite ∆ ⊂ Ω such that

Γ �KūNs A ∨
∨

(∆), and
Γ 2KūNs

∨
(∆).

Example

Γ = {�(r ∧ ∼r)}

⇒ Γ �iAKūNsn �p, because

Γ �KūNs �p ∨ ♦(r ∧ ∼r) , and
Γ 2KūNs ♦(r ∧ ∼r). R is not reflexive!

⇒ Pseudo–explosion!!
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The Logic iAKūNsn: Example

Theorem
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Final Remarks

Conclusion
The inconsistency–adaptive framework can be extended to modal
logics in a fairly natural way!

Further Results/Research
To construct iAML based on paraconsistent modal logics that do
not contain de Morgan laws (nor their modal analogues).
To construct iAML by starting from the semantic perspective.
To construct iAML that are based on paraconsistent modal logics
with a non–reflexive accessibility relation and that avoid
pseudo–explosion.
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