

Inconsistency–Adaptive Modal Logics: Preliminary Report

Hans Lycke

Centre for Logic and Philosophy of Science Ghent University Hans.Lycke@Ugent.be http://logica.ugent.be/hans

Advances in Modal Logic 2008 September 9–12 2008, Nancy

臣

Outline

Introduction

- Setting the Problem
- Aim of This Talk
- Paraconsistent Modal Logics
 - In General
 - Language Schema
 - Semantics
- Inconsistency–Adaptive Modal Logics
 - Main Idea
 - General Characterization
 - Semantics
 - Example

Outline

Introduction

- Setting the Problem
- Aim of This Talk
- Paraconsistent Modal Logics
 - In General
 - Language Schema
 - Semantics
- Inconsistency–Adaptive Modal Logics
 - Main Idea
 - General Characterization
 - Semantics
 - Example

Setting the Problem

Paraconsistent Modal Logics (pML)

Are obtained by adding to a paraconsistent logic the modal operators \Box (*necessity*) and \Diamond (*possibility*).

⇒ They combine the expressive power of modal logics with the non–explosive character of paraconsistent logics.

Setting the Problem

Paraconsistent Modal Logics (pML)

Are obtained by adding to a paraconsistent logic the modal operators \Box (*necessity*) and \Diamond (*possibility*).

- ⇒ They combine the expressive power of modal logics with the non–explosive character of paraconsistent logics.
- ⇒ They seem well–suited to explicate normative reasoning, reasoning about beliefs, about knowledge,...
 - = often inconsistent, but not trivial.

Setting the Problem

Paraconsistent Modal Logics (pML)

Are obtained by adding to a paraconsistent logic the modal operators \Box (*necessity*) and \Diamond (*possibility*).

- ⇒ They combine the expressive power of modal logics with the non–explosive character of paraconsistent logics.
- ⇒ They seem well–suited to explicate normative reasoning, reasoning about beliefs, about knowledge,...
 - = often inconsistent, but not trivial.

Problem

pML avoid explosion by invalidating some of the classical rules of inference.

e.g. Disjunctive Syllogism, Modus Ponens, de Morgan's laws,...

Setting the Problem

Paraconsistent Modal Logics (pML)

Are obtained by adding to a paraconsistent logic the modal operators \Box (*necessity*) and \Diamond (*possibility*).

- ⇒ They combine the expressive power of modal logics with the non–explosive character of paraconsistent logics.
- ⇒ They seem well–suited to explicate normative reasoning, reasoning about beliefs, about knowledge,...
 - = often inconsistent, but not trivial.

Problem

 $\ensuremath{\textbf{pML}}$ avoid explosion by invalidating some of the classical rules of inference.

- e.g. Disjunctive Syllogism, Modus Ponens, de Morgan's laws,...
 - \Rightarrow too weak to capture actual reasoning!

Outline

Introduction

- Setting the Problem
- Aim of This Talk
- Paraconsistent Modal Logics
 - In General
 - Language Schema
 - Semantics
- 3 Inconsistency–Adaptive Modal Logics
 - Main Idea
 - General Characterization
 - Semantics
 - Example

Aim of This Talk

Notice

The above problem is not specific to **pML**, but applies to paraconsistent logics in general.

Aim of This Talk

Notice

The above problem is not specific to **pML**, but applies to paraconsistent logics in general.

↔ notable exception: inconsistency–adaptive logics!

Aim of This Talk

Notice

The above problem is not specific to **pML**, but applies to paraconsistent logics in general.

↔ notable exception: inconsistency–adaptive logics!

Inconsistency–Adaptive Logics (iAL)

iAL avoid explosion by invalidating applications of some of the classical rules of inference.

Aim of This Talk

Notice

The above problem is not specific to **pML**, but applies to paraconsistent logics in general.

↔ notable exception: inconsistency–adaptive logics!

Inconsistency–Adaptive Logics (iAL)

iAL avoid explosion by invalidating applications of some of the classical rules of inference.

⇒ These rules of inference are not valid in general, but they are not invalid in general either.

Aim of This Talk

Notice

The above problem is not specific to **pML**, but applies to paraconsistent logics in general.

↔ notable exception: inconsistency–adaptive logics!

Inconsistency–Adaptive Logics (iAL)

iAL avoid explosion by invalidating applications of some of the classical rules of inference.

- ⇒ These rules of inference are not valid in general, but they are not invalid in general either.
- ⇒ Closer to actual reasoning!

Aim of This Talk

Notice

The above problem is not specific to **pML**, but applies to paraconsistent logics in general.

↔ notable exception: inconsistency–adaptive logics!

Inconsistency–Adaptive Logics (iAL)

iAL avoid explosion by invalidating applications of some of the classical rules of inference.

- ⇒ These rules of inference are not valid in general, but they are not invalid in general either.
- ⇒ Closer to actual reasoning!

Aim

To extend the inconsistency-adaptive framework to modal logics.

⇒ Inconsistency–adaptive modal logics!!

H. Lycke (Ghent University)

Inconsistency-Adaptive Modal Logics

Outline

ntroduction

- Setting the Problem
- Aim of This Talk
- Paraconsistent Modal Logics
 - In General
 - Language Schema
 - Semantics
- Inconsistency–Adaptive Modal Logics
 - Main Idea
 - General Characterization
 - Semantics
 - Example

In General

Some Restrictions

I will only consider:

normal modal logics,

In General

Some Restrictions

I will only consider:

- normal modal logics,
- that have at least a reflexive accessibility relation,

In General

Some Restrictions

I will only consider:

- normal modal logics,
- that have at least a reflexive accessibility relation, and
- that contain all the de Morgan laws (incl. the modal analogues)

In General

Some Restrictions

I will only consider:

- normal modal logics,
- that have at least a reflexive accessibility relation, and
- that contain all the de Morgan laws (incl. the modal analogues)

Example

The logic TūNs

In General

Some Restrictions

I will only consider:

- normal modal logics,
- that have at least a reflexive accessibility relation, and
- that contain all the de Morgan laws (incl. the modal analogues)

Example

- The logic TūNs
 - The modal extension of the paraconsistent logic CLūNs (equivalent to Priest's LP).

In General

Some Restrictions

I will only consider:

- normal modal logics,
- that have at least a reflexive accessibility relation, and
- that contain all the de Morgan laws (incl. the modal analogues)

Example

- The logic TūNs
 - The modal extension of the paraconsistent logic CLūNs (equivalent to Priest's LP).
 - = The paraconsistent counterpart of the modal logic T.

Outline

ntroduction

- Setting the Problem
- Aim of This Talk
- Paraconsistent Modal Logics
 - In General

Language Schema

Semantics

3 Inconsistency–Adaptive Modal Logics

- Main Idea
- General Characterization
- Semantics
- Example

The Logic TūNs: Language Schema

The Modal Language $\mathcal{L}^{\mathcal{M}}$					
la	anguage	letters	logical symbols	set of formulas	
	$\mathcal{L}^{\mathcal{M}}$	S	$\sim, \wedge, \lor, \supset, \equiv, \Box, \diamondsuit$	$\mathcal{W}^{\mathcal{M}}$	

- A - E -

Image: A matched black

The Logic TūNs: Language Schema

The Modal Language $\mathcal{L}^{\mathcal{M}}$					
	language	letters	logical symbols	set of formulas	
	$\mathcal{L}^{\mathcal{M}}$	S	$\sim, \wedge, \lor, \supset, \equiv, \Box, \diamondsuit$	$\mathcal{W}^{\mathcal{M}}$	

Definition

•
$$A \lor B =_{df} \sim (\sim A \land \sim B)$$

•
$$A \supset B =_{df} \sim A \lor B$$

•
$$A \equiv B =_{df} (A \supset B) \land (B \supset A)$$

•
$$\Diamond A =_{df} \sim \Box \sim A$$

The Logic TūNs: Language Schema

The Modal Language $\mathcal{L}^{\mathcal{M}}$					
	language	letters	logical symbols	set of formulas	
	$\mathcal{L}^{\mathcal{M}}$	S	$\sim, \wedge, \lor, \supset, \equiv, \Box, \diamondsuit$	$\mathcal{W}^{\mathcal{M}}$	

Definition

•
$$A \lor B =_{df} \sim (\sim A \land \sim B)$$

•
$$A \supset B =_{df} \sim A \lor B$$

•
$$A \equiv B =_{df} (A \supset B) \land (B \supset A)$$

•
$$\Diamond A =_{df} \sim \Box \sim A$$

Definition

$$\mathcal{S}^{\sim} = \{ \sim A \mid A \in \mathcal{S} \}$$

Outline

ntroduction

- Setting the Problem
- Aim of This Talk
- Paraconsistent Modal Logics
 - In General
 - Language Schema
 - Semantics
- Inconsistency–Adaptive Modal Logics
 - Main Idea
 - General Characterization
 - Semantics
 - Example

The Logic TūNs: Semantics

TūNs-models

A **T** \bar{u} **Ns**–model *M* is a 4–tuple $\langle W, w_0, R, v \rangle$, with

< 17 ▶

The Logic TūNs: Semantics

TūNs-models

A **TūNs**-model *M* is a 4-tuple $\langle W, w_0, R, v \rangle$, with

- W a set of worlds,
- w₀ the actual world,
- R a reflexive accessibility relation, and
- v an assignment function.

The Logic TūNs: Semantics

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The Logic TūNs: Semantics

The	Assignment Function
AP1	$v: \mathcal{S} \mapsto \{0, 1\}.$
AP2	$v: \mathcal{S}^{\sim} \mapsto \{0, 1\}.$

The Valuation Functions

SP1
$$v_M: \mathcal{W}^{\mathcal{M}} \mapsto \{0,1\}.$$

SP2 For $A \in S: v_M(A) = 1$ iff $v(A) = 1$.
SP3 For $A \in S: v_M(\sim A) = 1$ iff $v_M(A) = 0$ or $v(\sim A) = 1$.
SP4 $v_M(\sim \sim A) = 1$ iff $v_M(A) = 1$.
SP5 $v_M(A \land B) = 1$ iff $v_M(A) = 1$ and $v_M(B) = 1$.
SP6 $v_M(\sim (A \land B)) = 1$ iff $v_M(\sim A) = 1$ or $v_M(\sim B) = 1$.
SP7 $v_M(\Box A, w) = 1$ iff $\forall w' \in W$, if Rww' then $v_M(A, w') = 1$.
SP8 $v_M(\sim \Box A, w) = 1$ iff $\exists w' \in W$ such that Rww' and $v_M(\sim A, w') = 1$.

The Logic TūNs: Semantics

Truth in a Model

A is true in a **TūNs**-model M iff $v_M(A, w_0) = 1$.

The Logic TūNs: Semantics

Truth in a Model

A is true in a **TūNs**-model M iff $v_M(A, w_0) = 1$.

Models of a Premise Set

The **TūNs**-model *M* is a model of the premise set Γ iff for all $B \in \Gamma$, it is the case that $v_M(B, w_0) = 1$.

The Logic TūNs: Semantics

Truth in a Model

A is true in a **TūNs**-model M iff $v_M(A, w_0) = 1$.

Models of a Premise Set

The **TūNs**-model *M* is a model of the premise set Γ iff for all $B \in \Gamma$, it is the case that $v_M(B, w_0) = 1$.

Semantic Consequence

 $\Gamma \vDash_{T\bar{u}Ns} A$ iff A is true in all $T\bar{u}Ns$ -models of the premise set Γ .

Outline

Introduction

- Setting the Problem
- Aim of This Talk
- Paraconsistent Modal Logics
 - In General
 - Language Schema
 - Semantics

Inconsistency–Adaptive Modal Logics Main Idea

- General Characterization
- Semantics
- Example

Inconsistency–Adaptive Modal Logics (iAML)

Main Idea

Main Idea

iAML interpret a premise set as consistent as possible.

Inconsistency–Adaptive Modal Logics (iAML)

Main Idea

Main Idea

iAML interpret a premise set as consistent as possible.

- ⇒ Inconsistencies are supposed to be false, unless or until proven otherwise.
 - **iAL** if $A \lor (B \land \sim B)$ is derivable then A is supposed to be derivable as well, unless or until it can be proven that $B \land \sim B$ might be true.

Main Idea

Main Idea

iAML interpret a premise set as consistent as possible.

- ⇒ Inconsistencies are supposed to be false, unless or until proven otherwise.
 - **iAL** if $A \lor (B \land \sim B)$ is derivable then A is supposed to be derivable as well, unless or until it can be proven that $B \land \sim B$ might be true.
- ⇒ Only the problematic applications of some of the classical rules of inference are invalid.

Main Idea

Main Idea

iAML interpret a premise set as consistent as possible.

- ⇒ Inconsistencies are supposed to be false, unless or until proven otherwise.
 - **iAL** if $A \lor (B \land \sim B)$ is derivable then A is supposed to be derivable as well, unless or until it can be proven that $B \land \sim B$ might be true.
- ⇒ Only the problematic applications of some of the classical rules of inference are invalid.

Problem

What does it mean to interpret a premise set as consistent as possible in a modal setting?

Main Idea

Main Idea

iAML interpret a premise set as consistent as possible.

- ⇒ Inconsistencies are supposed to be false, unless or until proven otherwise.
 - **iAL** if $A \lor (B \land \sim B)$ is derivable then A is supposed to be derivable as well, unless or until it can be proven that $B \land \sim B$ might be true.
- ⇒ Only the problematic applications of some of the classical rules of inference are invalid.

Problem

What does it mean to interpret a premise set as consistent as possible in a modal setting?

As much reachable inconsistencies as possible are supposed to be false!

Main Idea

Reachable Inconsistencies

Inconsistencies that are true in worlds that are reachable from the actual world w_0 .

Main Idea

Reachable Inconsistencies

Inconsistencies that are true in worlds that are reachable from the actual world w_0 .

⇒ Captured by formulas of the form $(A \land \sim A)$, with $A \in S$.

Main Idea

Reachable Inconsistencies

Inconsistencies that are true in worlds that are reachable from the actual world w_0 .

⇒ Captured by formulas of the form $\Diamond ... \Diamond (A \land \sim A)$, with $A \in S$.

Reachability

Inconsistency

Two Possible Ways to Proceed

Consider the following two formulas:

$$(A \wedge \sim A) \quad \Leftrightarrow \quad \Diamond \Diamond (A \wedge \sim A)$$

Main Idea

Reachable Inconsistencies

Inconsistencies that are true in worlds that are reachable from the actual world w_0 .

⇒ Captured by formulas of the form $\Diamond ... \Diamond (A \land \sim A)$, with $A \in S$.

Inconsistency Reachability

Two Possible Ways to Proceed

Consider the following two formulas:

$$(A \wedge \sim A) \quad \Leftrightarrow \quad \Diamond \Diamond (A \wedge \sim A)$$

As both formulas state that the inconsistency $A \wedge \sim A$ is reachable, they should be treated on a par (Semantic perspective).

Main Idea

Reachable Inconsistencies

Inconsistencies that are true in worlds that are reachable from the actual world w_0 .

⇒ Captured by formulas of the form $\Diamond ... \Diamond (A \land \sim A)$, with $A \in S$.

↓ Inconsistency Reachability

Two Possible Ways to Proceed

Consider the following two formulas:

$$(A \wedge \sim A) \quad \Leftrightarrow \quad \Diamond \Diamond (A \wedge \sim A)$$

- As both formulas state that the inconsistency A ∧ ~A is reachable, they should be treated on a par (Semantic perspective).
- As both formulas are not equivalent, they express a difference and should not be treated on a par (Syntactic perspective).

H. Lycke (Ghent University)

Inconsistency–Adaptive Modal Logics

Main Idea

Reachable Inconsistencies

Inconsistencies that are true in worlds that are reachable from the actual world w_0 .

⇒ Captured by formulas of the form $\Diamond ... \Diamond (A \land \sim A)$, with $A \in S$.

↓ Inconsistency Reachability

Two Possible Ways to Proceed

Consider the following two formulas:

$$(A \wedge \sim A) \quad \Leftrightarrow \quad \Diamond \Diamond (A \wedge \sim A)$$

- As both formulas state that the inconsistency A ∧ ~A is reachable, they should be treated on a par (Semantic perspective).
- As both formulas are not equivalent, they express a difference and should not be treated on a par (Syntactic perspective).

H. Lycke (Ghent University)

Inconsistency-Adaptive Modal Logics

Outline

Introduction

- Setting the Problem
- Aim of This Talk
- Paraconsistent Modal Logics
 - In General
 - Language Schema
 - Semantics

Inconsistency–Adaptive Modal Logics

- Main Idea
- General Characterization
- Semantics
- Example

General Characterization

イロト イヨト イヨト

General Characterization

Adaptive Logics (AL) A Lower Limit Logic (LLL) 1. ۵ 2. A Set of Abnormalities Ω 3. An Adaptive Strategy

•

A ₽

General Characterization

Adaptive Logics (AL)

- 1. A Lower Limit Logic (LLL)
 - The LLL determines the inference rules that can be applied unrestrictedly.
 - •
- 2. A Set of Abnormalities Ω
 - Contraction of the cont
 - A b b *a*, unless *B* cannot be considered as false
- 3. An Adaptive Strategy
 - •

General Characterization

Adaptive Logics (AL)

- 1. A Lower Limit Logic (LLL)
 - The LLL determines the inference rules that can be applied unrestrictedly.
 - All LLL–consequences are AL–consequences as well.
- 2. A Set of Abnormalities Ω
 - •
 - A chiess to carinor be considered
- 3. An Adaptive Strategy
 - •

General Characterization

Adaptive Logics (AL)

- 1. A Lower Limit Logic (LLL)
 - The LLL determines the inference rules that can be applied unrestrictedly.
 - All LLL–consequences are AL–consequences as well.
- 2. A Set of Abnormalities Ω
 - Elements of Ω are interpreted as false as much as possible

- 3. An Adaptive Strategy
 - •

General Characterization

Adaptive Logics (AL)

- 1. A Lower Limit Logic (LLL)
 - The LLL determines the inference rules that can be applied unrestrictedly.
 - All LLL–consequences are AL–consequences as well.
- 2. A Set of Abnormalities Ω
 - Elements of Ω are interpreted as false as much as possible
 - The result: some conditionally derived consequences

 $A \lor B^{\in \Omega}$, unless *B* cannot be considered as false.

3. An Adaptive Strategy

General Characterization

Adaptive Logics (AL)

- 1. A Lower Limit Logic (LLL)
 - The LLL determines the inference rules that can be applied unrestrictedly.
 - All LLL-consequences are AL-consequences as well.
- 2. A Set of Abnormalities Ω
 - Elements of Ω are interpreted as false as much as possible
 - The result: some conditionally derived consequences

 $A \lor B^{\in \Omega}$, unless *B* cannot be considered as false.

- 3. An Adaptive Strategy
 - The strategy determines which of the conditionally derived formulas have to be withdrawn.

General Characterization

Example: the Logic iATuNsⁿ

- 1. The Lower Limit Logic
- 2. The Set of Abnormalities Ω

3. The Adaptive Strategy

General Characterization

Example: the Logic iATuNsⁿ

- 1. The Lower Limit Logic
 - = the paraconsistent modal logic **TūNs**.
- 2. The Set of Abnormalities Ω

3. The Adaptive Strategy

General Characterization

Example: the Logic iATuNsⁿ

- 1. The Lower Limit Logic
 - = the paraconsistent modal logic **TūNs**.
- 2. The Set of Abnormalities Ω

$$= \Omega = \{ \overbrace{\Diamond ... \Diamond} (A \land \sim A) \mid A \in \mathcal{S}; 0 \leq n \}$$

3. The Adaptive Strategy

General Characterization

Example: the Logic iATuNsⁿ

- 1. The Lower Limit Logic
 - the paraconsistent modal logic TūNs.
- 2. The Set of Abnormalities Ω

$$= \Omega = \{ \overbrace{\Diamond ... \Diamond} (A \land \sim A) \mid A \in \mathcal{S}; 0 \leq n \}$$

- 3. The Adaptive Strategy
 - normal selections

General Characterization

Example: the Logic iATuNsⁿ

- 1. The Lower Limit Logic
 - the paraconsistent modal logic TūNs.
- 2. The Set of Abnormalities Ω

$$= \quad \Omega = \{ \overbrace{\Diamond ... \Diamond} (A \land \sim A) \mid A \in \mathcal{S}; 0 \leq n \}$$

- 3. The Adaptive Strategy
 - normal selections

 \leftrightarrow Other possibilities: reliability, minimal abnormality,...

General Characterization

Example: the Logic iATuNsⁿ

- 1. The Lower Limit Logic
 - the paraconsistent modal logic TūNs.
- 2. The Set of Abnormalities Ω

$$= \quad \Omega = \{ \overbrace{\Diamond ... \Diamond} (A \land \sim A) \mid A \in \mathcal{S}; 0 \leq n \}$$

- 3. The Adaptive Strategy
 - normal selections

 \leftrightarrow Other possibilities: reliability, minimal abnormality,...

Generalizing the Approach

For all other iAML, the characterization is completely equivalent!

A (1) > A (1) > A

Outline

Introduction

- Setting the Problem
- Aim of This Talk
- Paraconsistent Modal Logics
 - In General
 - Language Schema
 - Semantics

Inconsistency–Adaptive Modal Logics

- Main Idea
- General Characterization
- Semantics
- Example

The Logic iATūNsⁿ: Semantics — Semantic Consequence

Preferential Semantics

The $iAT\bar{u}Ns^n$ -consequences of a premise set Γ are defined by reference to sets of preferred $T\bar{u}Ns$ -models of Γ .

= the selected sets of $T\bar{u}Ns$ -models of Γ .

The Logic iATūNsⁿ: Semantics — Semantic Consequence

Preferential Semantics

The $iAT\bar{u}Ns^n$ -consequences of a premise set Γ are defined by reference to sets of preferred $T\bar{u}Ns$ -models of Γ .

= the selected sets of $T\bar{u}Ns$ -models of Γ .

Definition

 $\Gamma \vDash_{iAT\bar{u}Ns^n} A$ iff there is at least one selected set Σ of $T\bar{u}Ns$ -models of Γ such that A is true in all models that are in Σ .

The Logic iATūNsⁿ: Semantics — Selecting the Models

The Abnormal Part of a Model $Ab(M) = \{A \in \Omega \mid v_M(A, w_0) = 1\}$

< (17) > < (17) > >

The Logic iATūNsⁿ: Semantics — Selecting the Models

The Abnormal Part of a Model $Ab(M) = \{A \in \Omega \mid v_M(A, w_0) = 1\}$

Minimally Abnormal Models

A **TūNs**–model *M* of Γ is minimally abnormal iff there is no **TūNs**–model *M'* of Γ such that $Ab(M') \subset Ab(M)$.

The Logic iATūNsⁿ: Semantics — Selecting the Models

The Abnormal Part of a Model $Ab(M) = \{A \in \Omega \mid v_M(A, w_0) = 1\}$

Minimally Abnormal Models

A **TūNs**–model *M* of Γ is minimally abnormal iff there is no **TūNs**–model *M'* of Γ such that $Ab(M') \subset Ab(M)$.

The Selected Sets

All minimally abnormal models that verify the same abnormalities are grouped together in distinct sets, the selected sets of a premise set.

The Logic iATūNsⁿ: Semantics — Selecting the Models

The Abnormal Part of a Model $Ab(M) = \{A \in \Omega \mid v_M(A, w_0) = 1\}$

Minimally Abnormal Models

A **TūNs**–model *M* of Γ is minimally abnormal iff there is no **TūNs**–model *M'* of Γ such that $Ab(M') \subset Ab(M)$.

The Selected Sets

All minimally abnormal models that verify the same abnormalities are grouped together in distinct sets, the selected sets of a premise set.

The Logic iATūNsⁿ: Semantics — Selecting the Models

About Consistency

Only those **TūNs**–models of a premise set are taken into consideration that verify as less reachable inconsistencies as possible.

In case Γ is consistent, the minimally abnormal models will be those models that do not verify any reachable inconsistencies.
 = the T-models of Γ!!

The Logic iATūNsⁿ: Semantics — Selecting the Models

About Consistency

Only those **TūNs**–models of a premise set are taken into consideration that verify as less reachable inconsistencies as possible.

- In case Γ is consistent, the minimally abnormal models will be those models that do not verify any reachable inconsistencies.
 = the T-models of Γ!!
- \Rightarrow The logic **T** is the Upper Limit Logic of the logic **iAT** \bar{u} **Ns**ⁿ.

Outline

Introduction

- Setting the Problem
- Aim of This Talk
- Paraconsistent Modal Logics
 - In General
 - Language Schema
 - Semantics

Inconsistency–Adaptive Modal Logics

- Main Idea
- General Characterization
- Semantics
- Example

The Logic iATūNsⁿ: Example

Theorem

 $\Gamma \vDash_{iAT\bar{u}Ns^n} A \text{ iff there is a finite } \Delta \subset \Omega \text{ such that}$

< 47 ▶

The Logic iATūNsⁿ: Example

Theorem

- $\Gamma \vDash_{iAT\bar{u}Ns^n} A$ iff there is a finite $\Delta \subset \Omega$ such that
 - $\Gamma \vDash_{T\bar{u}Ns} A \lor \bigvee (\Delta)$, and
 - $\Gamma \nvDash_{T\bar{u}Ns} \bigvee (\Delta).$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The Logic iATūNsⁿ: Example

Theorem

 $\Gamma \vDash_{iAT\bar{u}Ns^n} A \textit{ iff there is a finite } \Delta \subset \Omega \textit{ such that}$

•
$$\Gamma \vDash_{\mathsf{T\bar{u}Ns}} A \lor \bigvee (\Delta)$$
, and

• $\Gamma \nvDash_{T\bar{u}Ns} \bigvee (\Delta).$

Example

$$\mathsf{\Gamma} = \{ \Diamond (p \lor (q \land {\sim} q)), \Diamond \Diamond (q \land {\sim} q), \Box (r \land {\sim} r) \}$$

The Logic iATūNsⁿ: Example

Theorem

 $\Gamma \vDash_{iAT\bar{u}Ns^n} A \text{ iff there is a finite } \Delta \subset \Omega \text{ such that}$

•
$$\Gamma \vDash_{\mathsf{T\bar{u}Ns}} A \lor \bigvee (\Delta)$$
, and

• $\Gamma \nvDash_{\mathsf{T\bar{u}Ns}} \bigvee (\Delta).$

Example

$$\mathsf{F} = \{ \Diamond (p \lor (q \land \sim q)), \Diamond \Diamond (q \land \sim q), \Box (r \land \sim r) \}$$

 \Rightarrow $\Gamma \vDash_{iAT\bar{u}Ns^n} \Diamond p$, because

The Logic **iATūNs**ⁿ: Example

Theorem

 $\Gamma \vDash_{i A T \overline{u} N s^n} A \text{ iff there is a finite } \Delta \subset \Omega \text{ such that}$

•
$$\Gamma \vDash_{\mathsf{T\bar{u}Ns}} A \lor \bigvee (\Delta)$$
, and

Γ ⊭_{TūNs} ∨(Δ).

Example

$$\mathsf{F} = \{ \Diamond (p \lor (q \land \sim q)), \Diamond \Diamond (q \land \sim q), \Box (r \land \sim r) \}$$

- \Rightarrow $\Gamma \vDash_{iAT\bar{u}Ns^n} \Diamond p$, because
 - $\Gamma \vDash_{\mathsf{T}\bar{\mathsf{u}}\mathsf{N}\mathsf{s}} \Diamond p \lor \Diamond (q \land \sim q)$, and
 - $\Gamma \nvDash_{T\bar{u}Ns} \Diamond (q \land \sim q).$

The Logic **iATūNs**ⁿ: Example

Theorem

 $\Gamma \vDash_{iAT\bar{u}Ns^n} A \text{ iff there is a finite } \Delta \subset \Omega \text{ such that}$

•
$$\Gamma \vDash_{\mathsf{T\bar{u}Ns}} A \lor \bigvee (\Delta)$$
, and

Γ ⊭_{TūNs} ∨(Δ).

Example

$$\mathsf{\Gamma} = \{ \Diamond (p \lor (q \land \sim q)), \Diamond \Diamond (q \land \sim q), \Box (r \land \sim r) \}$$

- \Rightarrow $\Gamma \vDash_{iAT\bar{u}Ns^n} \Diamond p$, because
 - $\Gamma \vDash_{\overline{\text{tuNs}}} \Diamond p \lor \Diamond (q \land \sim q)$, and
 - $\Gamma \nvDash_{\mathsf{T\bar{u}Ns}} \Diamond (q \land \sim q).$
 - Γ⊭_{iATūNs}n □p, because

 \Rightarrow

The Logic iATūNsⁿ: Example

Theorem

 $\Gamma \vDash_{i A T \overline{u} N s^n} A \text{ iff there is a finite } \Delta \subset \Omega \text{ such that}$

•
$$\Gamma \vDash_{\mathsf{T\bar{u}Ns}} A \lor \bigvee (\Delta)$$
, and

• Γ ⊭_{TūNs} ∨(Δ).

Example

$$\mathsf{\Gamma} = \{ \Diamond (p \lor (q \land \sim q)), \Diamond \Diamond (q \land \sim q), \Box (r \land \sim r) \}$$

- \Rightarrow $\Gamma \vDash_{iAT\bar{u}Ns^n} \Diamond p$, because
 - $\Gamma \vDash_{\mathsf{TuNs}} \Diamond p \lor \Diamond (q \land \sim q)$, and
 - $\Gamma \nvDash_{\mathsf{T\bar{u}Ns}} \Diamond (q \land \sim q).$
- $\Rightarrow \Gamma \nvDash_{iAT\bar{u}Ns^n} \Box p$, because although
 - $\Gamma \models_{\mathsf{T\bar{u}Ns}} \Box p \lor \Diamond (r \land \sim r)$, also
 - $\Gamma \vDash_{T\bar{u}Ns} \Diamond (r \land \sim r).$

The Logic iAS4ūNsⁿ: Example

Theorem

- $\Gamma \vDash_{iAS4\bar{u}Ns^n} A$ iff there is a finite $\Delta \subset \Omega$ such that
 - $\Gamma \vDash_{S4\bar{u}Ns} A \lor \bigvee (\Delta)$, and
 - $\Gamma \nvDash_{S4\bar{u}Ns} \bigvee (\Delta).$

イロト イポト イヨト イヨト

The Logic iAS4ūNsⁿ: Example

Theorem

 $\Gamma \vDash_{iAS4\bar{u}Ns^n} A$ iff there is a finite $\Delta \subset \Omega$ such that

•
$$\Gamma \vDash_{S4\bar{u}Ns} A \lor \bigvee (\Delta)$$
, and

Γ ⊭_{S4ūNs} ∨(Δ).

Example

$$\mathsf{F} = \{ \Diamond (p \lor (q \land \sim q)), \Diamond \Diamond (q \land \sim q), \Box (r \land \sim r) \}$$

 $\Rightarrow \Gamma \nvDash_{iAS4\bar{u}Ns^n} \Diamond p$, because although

• $\Gamma \vDash_{\mathsf{S4\bar{u}Ns}} \Diamond p \lor \Diamond (q \land \sim q)$, also

• $\Gamma \models_{\mathsf{S4\bar{u}Ns}} \Diamond (q \land \sim q).$

R is transitive!

- Γ $\nvDash_{iAS4\bar{u}Ns^n}$ □*p*, because although
 - $\Gamma \models_{\mathsf{S4\bar{u}Ns}} \Box p \lor \Diamond (r \land \sim r)$, also
 - $\Gamma \vDash_{S4\bar{u}Ns} \Diamond (r \land \sim r).$

The Logic iAKūNsⁿ: Example

Theorem

 $\Gamma \vDash_{iAK\bar{u}Ns^n} A$ iff there is a finite $\Delta \subset \Omega$ such that

- $\Gamma \vDash_{\mathbf{K}\bar{\mathbf{u}}\mathbf{Ns}} A \lor \bigvee (\Delta)$, and
- $\Gamma \nvDash_{\mathbf{K} \overline{\mathbf{u}} \mathbf{N} \mathbf{s}} \bigvee (\Delta).$

- 4 回 ト 4 ヨ ト 4 ヨ ト

The Logic iAKūNsⁿ: Example

Theorem

 $\Gamma \vDash_{iAK\bar{u}Ns^n} A \text{ iff there is a finite } \Delta \subset \Omega \text{ such that}$

- $\Gamma \vDash_{\mathbf{K}\bar{\mathbf{u}}\mathbf{Ns}} A \lor \bigvee (\Delta)$, and
- $\Gamma \nvDash_{\mathbf{K} \overline{\mathbf{u}} \mathbf{N} \mathbf{s}} \bigvee (\Delta).$

Example

$$\Gamma = \{\Box(r \land \sim r)\}$$

- $\Rightarrow \Gamma \vDash_{iAK\bar{u}Ns^n} \Box p$, because
 - $\Gamma \vDash_{\mathbf{K} \overline{\mathbf{u}} \mathbf{N} \mathbf{s}} \Box p \lor \Diamond (r \land \sim r)$, and
 - $\Gamma \nvDash_{\mathbf{K}\overline{\mathbf{u}}\mathbf{Ns}} \Diamond (r \land \sim r).$

R is not reflexive!

The Logic iAKūNsⁿ: Example

Theorem

 $\Gamma \vDash_{iAK\bar{u}Ns^n} A \text{ iff there is a finite } \Delta \subset \Omega \text{ such that}$

- $\Gamma \vDash_{K\bar{u}Ns} A \lor \bigvee (\Delta)$, and
- Γ ⊭_{KūNs} ∨(Δ).

Example

$$\Gamma = \{\Box(r \land \sim r)\}$$

- $\Rightarrow \Gamma \vDash_{iAK\bar{u}Ns^n} \Box p$, because
 - $\Gamma \vDash_{\mathbf{K}\bar{\mathbf{u}}\mathbf{Ns}} \Box p \lor \Diamond (r \land \sim r)$, and
 - $\Gamma \nvDash_{K\bar{u}Ns} \Diamond (r \land \sim r).$

R is not reflexive!

Pseudo-explosion!!

Final Remarks

Conclusion

The inconsistency–adaptive framework can be extended to modal logics in a fairly natural way!

Final Remarks

Conclusion

The inconsistency–adaptive framework can be extended to modal logics in a fairly natural way!

Further Results/Research

- To construct **iAML** based on paraconsistent modal logics that do not contain de Morgan laws (nor their modal analogues).
- To construct **iAML** by starting from the semantic perspective.
- To construct **iAML** that are based on paraconsistent modal logics with a non-reflexive accessibility relation and that avoid pseudo-explosion.

