An Extension of Kracht's Theorem to Generalized Sahlqvist Formulas

Stanislav Kikot

Moscow State University

 $\mathcal{M}l_{\Lambda}$:

 p_1, p_2, \dots

 $\land,\lor,\lnot,\rightarrow$

 \top, \bot

 $\Diamond_{\lambda}, \Box_{\lambda}, \quad \lambda \in \Lambda$

 $POS: p_i, \top, \bot, \land, \lor, \Box_{\lambda}, \Diamond_{\lambda}$

NEG: negation of POS

Sahlqvist formula:

$$BA: \quad \Box_{\lambda_1} \ldots \Box_{\lambda_n} p_i$$

$$SA: BA, NEG, \land, \lor, \diamond_{\lambda}$$

$$SI: SA \rightarrow POS$$

$$SF: SI, \square_{\lambda}, \wedge, \vee^*$$

Theorem. Every Sahlqvist formula has a computable local first-order equivalent.

Kracht formulas

 FO_{Λ} :

 $R_{\lambda}, \quad \lambda \in \Lambda$

Restricted quantification:

$$\forall y(xR_{\lambda}y \to \alpha(y)) \qquad (\forall y \triangleright_{\lambda} x)\alpha(y)$$

$$\exists y (x R_{\lambda} y \land \alpha(y)) \qquad (\exists y \triangleright_{\lambda} x) \alpha(x)$$

$$\Delta = \square_{\lambda_1} \dots \square_{\lambda_n}$$

We extend the set of predicate symbols with R_{Δ} for any Δ , and will allow the atomic formulas $xR_{\Delta}y$.

 $(xR_{\Delta}y)$ iff there is a sequence of points v_0,\ldots,v_n such that $v_0=x,v_n=y$ and $x_{i-1}R_{\lambda_i}x_i$ for $1\leq i\leq n$

We call a formula *restrictedly positive* if it is built up from atomic formulas, using \land , \lor and restricted quantifiers only.

A formula is called *clean* if any variable is quantified only once.

We say that an occurrence of the variable y in the clean formula α is *inherently universal* if either y is free, or else y is bound by a restricted quantifier of the form $(\forall y \triangleright x)\beta$ which is not in the scope of an existential quantifier.

 $\alpha(x)$ is a Kracht formula if

• α is clean,

 \bullet α is restrictedly positive,

• every atomic formula is either of the form u = u or $u \neq u$ or has a form $xR_{\Delta}y$ $(n \geq 0)$ where at least one variable of x and y is inherently universal.

 $\alpha(x)$ is a Kracht formula if

 $\bullet \alpha$ is clean,

 \bullet α is restrictedly positive,

• every atomic formula is either of the form u=u or $u\neq u$ or has a form $xR_{\Delta}y$ $(n\geq 0)$ where x is inherently universal.

Theorem (Kracht)

Claim 1. Every Sahlqvist formula locally corresponds to some Kracht formula.

Claim 2. Every Kracht formula locally corresponds to some Sahlqvist formula.

Generalized Sahlvist formulas (Goranko, Vakarelov)

Boxed atom:

 $BA: p_i \mid \Box_{\lambda} BA$

Box-formula

$$BF: p_i \mid \Box_{\lambda} BA \mid POS \rightarrow BF$$

Examples of box-formulas

$$\Box_{\lambda_1} \ldots \Box_{\lambda_n} p_j$$
 $\Box_{\lambda_1}(POS_1 o \Box_{\lambda_2}(POS_2 o p_j))$ p_j is a head

Let A be a set of box-formulas.

Dependency graph of A:

$$G = (V_A, E_A)$$

 V_A contains all variables which occur in A

 $p_i E_A p_j \iff p_i$ occurs in a formula from A

with a head p_j

A is inductive if G_A is acyclic

Generalized Sahlqvist formula:

$$BF: p_i \mid \Box_{\lambda}BF \mid POS \rightarrow BF$$

 $GSA: BF, NEG, \land, \lor, \diamond_{\lambda}, BF(GSA)$ is inductive

 $GSI: GSA \rightarrow POS$

 $GSF: GSI, \square_{\lambda}, \wedge, \vee^*$

Theorem Every generalized Sahlqvist formula has a computable local first-order equivalent.

What first-order formulas we obtain?

$$\Box_{\lambda_1} \dots \Box_{\lambda_n} p_j \qquad R_{\lambda_1} \dots R_{\lambda_n}$$
 BF ?

$$L: x_i, \cap, \cup, R_{\lambda}^{-1}, R_{\lambda}^{\square}, R_{\lambda}, \top, \perp.$$

Here \bot, \top, x_i are atoms, $R_{\lambda}^{-1}, R_{\lambda}^{\square}, R_{\lambda}$ are unary connectives, \cap, \cup are binary connectives.

 (W,R_{λ},x_i) is a model with universe W, binary predicates R_{λ} and constants x_i

$$x_i = \{x_i\}$$

$$\top = W$$

$$\perp = \emptyset$$

$$R_{\lambda}^{-1}(A) = \{x | \exists y \in AxR_{\lambda}y\}$$

$$R_{\lambda}^{\square}(A) = \{x | \forall y (x R_{\lambda} y \to y \in A) \}$$

$$R_{\lambda}(A) = \{x | \exists y \in AyR_{\lambda}x\}$$

Let \mathfrak{X} be the minimal class of expressions satisfying the conditions:

$$\bullet \{x_1,\ldots,x_n\}\subseteq \mathfrak{K};$$

• if $S \in \mathcal{K}$, then $R_{\lambda}(S) \in \mathcal{K}$;

• if $B \subseteq \mathcal{K}$ and $S \in \mathcal{K}$ then $S \cap POS(B) \in \mathcal{K}$

$$(POS(B): B, \cap, \cup, R_{\lambda}^{-1}, R_{\lambda}^{\square}, \top, \bot)$$

Let $\phi \in L$ and $\psi \in Sub(\phi)$

We say that a subexpression ψ is *safe* if one of the following holds:

1)
$$\psi = x_i$$
;

2) $\psi = R_{\lambda}(\psi')$, where ψ' is safe;

3) $\psi = \psi' \cap \psi''$, where either ψ' or ψ'' is safe.

We say that an expression ϕ is safe if

1) ϕ is safe as a subexpression of itself;

2) for every $R_{\lambda}(\psi) \in Sub(\phi)$ the subexpression ψ is safe.

Claim:

$$\mathfrak{K} = \{S \in L | S \text{ is safe } \}$$

Examples of safe expressions

$$x_i, R(x), R(R(x) \cap R^{-1}R(x))$$

$$R\left(\left(R(x)\cap R^{-1}R(x)\right)\cap \left(R^{-1}(x)\cap R^{-1}(R(x))\right)\right)$$

There is a lineal algorithm, which takes an expression $\phi \in L$ and determines whether ϕ is safe.

Generalized Kracht's formulas

 $\square_{\lambda_1} \dots \square_{\lambda_n} p_j \qquad R_{\lambda_1} \dots R_{\lambda_n}$

BF Safe expressions

For any safe expression $S(x_1, ..., x_n)$ we add to our signature the predicate $y \in S(x_1, ..., x_n)$.

 $\alpha(x)$ is a Generalized Kracht formula if

• α is clean,

 \bullet α is restrictedly positive,

• every atomic formula is either of the form u = u or $u \neq u$ or has a form $x \in S(x_1, ..., x_n)$, where S is a safe expression and $x_1, ..., x_n$ are inherently universal.

Theorem

Claim 1. Every generalized Sahlqvist formula locally corresponds to some generalized Kracht formula.

Claim 2. Every generalized Kracht formula locally corresponds to some generalized Sahlqvist formula. **Example 1.** The formula cub_1 is theorem of K^3 (V. Shehtman, 1978):

 $cub_1 = \left[\Diamond_1(\Box_2 p_{12} \wedge \Box_3 p_{13}) \wedge \Diamond_2(\Box_1 p_{21} \wedge \Box_3 p_{23}) \wedge \Diamond_3(\Box_1 p_{31} \wedge \Box_2 p_{32}) \wedge \right]$ $\Box_1 \Box_2(p_{12} \wedge p_{21} \to \Box_3 q_3) \wedge \Box_1 \Box_3(p_{13} \wedge p_{31} \to \Box_2 q_2) \wedge \Box_2 \Box_3(p_{23} \wedge p_{32} \to \Box_1 q_1) \right]$ $\to \Diamond_1 \Diamond_2 \Diamond_3(q_1 \wedge q_2 \wedge q_3).$

$$\forall x_1 \triangleright_1 x \forall x_2 \triangleright_2 x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_1 \triangleright_1 x \forall x_2 \triangleright_2 x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_1 \triangleright_1 x \forall x_2 \triangleright_2 x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_1 \triangleright_1 x \forall x_2 \triangleright_2 x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_1 \triangleright_1 x \forall x_2 \triangleright_2 x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_3 \triangleright_3 x \exists y ((xR_1R_2R_3y) \land x \forall x_3 \triangleright_3 x \exists x ((xR_1R_2R_3y) \land x ((xR_1R_2R_3x) \land x ((xR_1R_2R_3x) \land x ((xR_1R_2R_3x) \land x ((xR_1R_2R_3x) \land x ((xR_1R_2R_$$

$$\land y \in R_3(R_2(x_1) \cap R_1(x_2)) \land y \in R_2(R_3(x_1) \cap R_1(x_3)) \land$$

$$\land y \in R_1(R_2(x_3) \cap R_3(x_2))).$$

Example 2. (Goranko, Vakarelov)

$$D_2 = p \land \Box(\Diamond p \to \Box q) \to \Diamond\Box\Box q$$

Its first-order correspondent is

$$\exists y \left(xRy \land \forall z \left(yR^2z \to z \in R(R(x) \cap R^{-1}(x)) \right) \right).$$

Example 3.

$$p \wedge \Box_1(\Diamond_1 p \rightarrow \Box_3 r) \rightarrow \Diamond_2(\Diamond_2 p \wedge \Diamond_3 r)$$

$$\exists y \exists z \exists v (xR_1y \land yR_1x \land xR_2z \land zR_2x \land yR_3v \land zR_3v)$$

$$x = 1 \quad x = 3$$

$$2 \quad x = 3$$

$$2 \quad x = 3$$

$$x = 1 \quad y = 3 \quad \Rightarrow 0$$

$$2 \quad \Rightarrow 0$$

$$2 \quad \Rightarrow 0$$

$$\exists y (xR_1y \wedge yR_1x \wedge$$

$$\land \exists v \left(y R_3 v \land v \in R_3(R_2(x) \cap R_2^{-1}(x)) \right)$$